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1. Experimental Section
1.1 Chemical Reagents
Zinc nitrate hexahydrate (Zn(NO3)2·6H2O, 99.0%), Zinc sulfate heptahydrate (ZnSO4·7H2O, AR), 2-
Methylimidazole (C4H6N2, 98.0%), lead bromide (PbBr2, 99.9%), cesium bromide (CsBr, 99.0%), 
oleic acid (OA, 80%-90%), oleylamine (OAm, 90.0%), Dimethyl sulfoxide (DMSO, C2H6SO, >99.0%), 
toluene (C7H8, 99.0%), N, N-dimethylformamide (DMF, C3H7NO, 99.5%), methanol (CH3OH, 99.5%), 
ethanol (CH3CH2OH, 99.5%), Tetracycline hydrochloride (C22H24N2O8·HCl, 96%), L-Histidine 
(C6H9N3O2, > 99.0%), triethanolamine (TEOA, C6H15NO3, 98.0%), benzoquinone (BQ, C6H4O2, 
99.0%), and isopropyl alcohol (IPA, C3H8O, 98.0%) were purchased from Aladdin Co. Ltd.
1.2 Characterization.
Powder X-ray diffraction (PXRD) analysis was conducted using an X-ray diffractometer (Rigaku, 
Japan) equipped with Cu Kα radiation. Transmission electron microscopy (TEM) images were 
acquired using JEOL, JEM-2100F. The surface morphology of the fabricated material were 
examined using scanning electron microscopy (SEM) with a FEI Quanta 600 instrument. UV-visible 
diffuse reflectance spectroscopy (UV-Vis DRS) measurements were carried out using a Shimadzu 
UV-2600 UV-visible spectrophotometer (Japan). X-ray photoelectron spectroscopy (XPS) analysis 
was conducted using a Thermo ESCALAB 250Xi instrument with Al Kα X-ray radiation. Ultraviolet 
photoelectron spectroscopy (UPS) was carried out by X-ray photoelectron spectroscopy (PHI5000 
VersaProbe III). FTIR spectra were obtained using an attenuated total reflectance (ATR) mode on 
a Nicolet iS 50 instrument (Thermo Fisher, USA). Photoluminescence (PL) emission spectra were 
collected using a fluorescence spectrophotometer (F7000, Hitachi, Japan). Time-resolved 
photoluminescence (TRPL) spectra were recorded on a fluorescence lifetime spectrophotometer 
(FLS 1000, Edinburgh, UK) with an excitation wavelength of 325 nm. Electrochemical 
measurements were performed using an electrochemical analyzer (CHI660C, CH Instruments, 
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Shanghai). The counter electrode, reference electrode, and electrolyte used in the measurements 
were Pt wire, Ag/AgCl (saturated KCl), and a 0.5 M Na2SO4 solution, respectively.

Fig.S1. Schematic illustration of charge carrier transfer in direct Z-scheme photocatalysts (this 
work).

Fig.S2. Pore size distributions based on density-functional theory (DFT) analysis of ZIF-8 and HZIF-
8 and CsPbBr3@HZIF-8.



Fig.S3. PXRD patterns of ZIF-8 and HZIF-8.

Fig.S4. SEM of 4%-CsPbBr3@HZIF-8.

Fig.S5. Band structures of CsPbBr3 and HZIF-8 from UPS.

Fig.S6. Post-reaction PXRD of 4%-CsPbBr3@HZIF-8.



Fig. S7. Post-reaction SEM images of 4%-CsPbBr3@HZIF-8.

Fig.S8. 4%-CsPbBr3@ZIF-8 for degradation of pollutants in the coexistence system.

Fig.S9. 4%-CsPbBr3@ZIF-8 for degradation of different pollutants.



Fig. S10. Map of tap water sources.

Fig.S11. Map of river sources.

Fig.S12. Map of lake sources.







Fig. S13. Spectra of degradation intermediates (a-I, P1-P9).



Table S1. Photocatalytic degradation of TCH by various photocatalysts.

Photocatalyst (amount)
Organics 

(Concentration)
Irradiation time Light soure

Degradatio

n

CsPbBr3@HZIF-8 (15 mg) 30 mL TCH (10 mg/L) 40 min 300W Xe-lamp (λ>420 nm) 94% This work

CsPbBr3-TiO2 (50 mg) 100 mL TCH (20 mg/L) 60 min 300W Xe-lamp (λ>420 nm) 94% 1

CsPbBr3@SiO2(50 mg) 100 mL TCH (20 mg/L) 120 min 300W Xe-lamp (λ>420 nm) 75% 2

CsPbBr3 QDs (100 mg) 100 mL TCH (10 mg/L) 30 min 300W Xe-lamp (λ>420 nm) 76% 3

ZIS@P20 (8 mg) 40 mL TCH (20 mg/L) 60 min 800W Xe-lamp (λ>420 nm) 99.9% 4

N-CNT/mpg-C3N4 (50 mg) 50 mL TCH (20 mg/L) 240 min 300W Xe-lamp (λ>420 nm) 67.1% 5

γ-Fe2O3/g-C3N4 (50 mg) 100 mL TCH (10 mg/L) 120 min 500W Xe-lamp (λ>420 nm) 73.8% 6

Bi2Sn2O7/ Bi2MoO6(25 mg) 100 mL TCH (20 mg/L) 100 min 300W Xe-lamp (λ>400 nm) 98.7% 7



Table S2 Time-resolved PL decay parameters of different samples under 365 nm excitation. The two-
exponential decay curves were fitted using a non-linear least-squares method with a two-component 
decay law. The average lifetime (τav) was then determined using the equation:
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(82.30.2%)
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29.48

(94.77%)

1.053 28.35



Table S3 Characteristics of intermediate products of the degradation of TCH.

Name m/z Supposed Structure
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