Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Lightweight, Superelastic, and Temperature-Resistant rGO/Polysulfoneamide-Based Nanofiber Composite Aerogel for Wearable Piezoresistive Sensor

Ziwen Wang,^a Zhen Qin,^a Biao Zhao,^a Han Zhu^{*b} and Kai Pan^{*a}

a State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.

* E-mail: pankai@mail.buct.edu.cn

b College of Materials Science and Engineering, Beijing University of Chemical Technology,

Beijing, China

* E-mail: zhuhan@mail.buct.edu.cn

Fig. S1 (a) The picture of PSAN nanofiber film, (b) the SEM image of PSAN nanofiber film, (c) the SEM image of homogenized PSAN nanofiber.

Fig. S2 (a) The digital picture of GO dispersion, (b) the AFM image of GO nanosheets, (c,d) the TEM images of GO nanosheets.

Fig. S3 (a) The mixed solution of GO dispersion and PSAN nanofibers formed hydrogel after heating, (b) GA can be fabricated into large size.

Fig. S4 (a) Digital picture of the prepared rGO aerogel, SEM images inside rGO aerogel with (b) interconnected porous structure and (c,d) smooth pore wall structure.

Fig. S5 Elements distribution on the pore wall of GA-1.

Fig. S6 Pore structures of GA with PSAN nanofiber contents of (a) 0.5 wt%, (b) 1 wt%,(c) 1.5 wt%, and (d) 2 wt%, respectively.

Fig. S7 Schematic illustration of hydrogen bonds formation between rGO nanosheets and PSAN nanofibers.

Fig. S8 Compression and recovery process of rGO aerogel.

Fig. S9 Top and main views of rGO aerogel and GA with different PSAN nanofiber contents.

Fig. S10 (a) The height retention of GA with different PSAN nanofiber contents under 80% strain, (b) the compression modulus of GA with different PSAN nanofiber contents.

Fig. S11 (a-c) Stress-strain curves and (d-f) height retention and maximum strength of GA with PSAN nanofiber content of 0.5 wt%, 1.5 wt% and 2 wt% under 10-60% strain, respectively.

0	>>	1 2 3	4 5	200 ℃ 〉〉 12 h	
	>>			200 ℃ 〉) 12 h	
		Before	After		Retention rate (%)
Diameter (mm)		22	21.5	i	98
Height (mm)		11	10.5	j	95
Mass (mg)		90	85.5	5	95

Fig. S12 Changes in shape, size and mass of GA-1 after being heated at 200 °C for 12

h.

Fig. S13 Picture of the GA-based flexible piezoresistive sensor.

Fig. S14 The brightness of LED varies with GA-1 during compression and recovery process.

Fig. S15 The piezoresistive sensing performance of GA-1-based piezoresistive sensor at -60 °C.

Materials	Pressure range	Sensitivity	Compression strength	Durability	Response time	Recovery time	Reference
rGO/ANF/PANI T	~0.7 kPa 0.7~7 kPa	1.73 kPa ⁻¹ 0.3 kPa ⁻¹	3 kPa (45%)	3000	240 ms (10%)	140 ms (10%)	[1]
CNF/CNT/rGO	~0.21 kPa	5.61 kPa ⁻¹	1.2 kPa (80%)	2000	-	-	[2]
BC/rGO	~2.54 kPa 2.54~12 kPa	13.89 kPa ⁻¹ 2.71 kPa ⁻¹	52 kPa (80%)	1000	120 ms	540 ms	[3]
CNT/rGO	~0.5 kPa 0.5~3.5 kPa	7 kPa ⁻¹ 11.8 kPa ⁻¹	11.5 kPa (60%)	2000	317 ms	303 ms	[4]
PAN/rGO	~14 kPa	28.62 kPa ⁻¹	43.54 kPa (80%)	2600	305 ms (2634 Pa)	165 ms (2634 Pa)	[5]
MXene/rGO	~3.3 kPa 3.3~6.4 kPa 6.4~10.1 kPa	61 kPa ⁻¹ 334 kPa ⁻¹ 609 kPa ⁻¹	11.5 kPa (80%)	17000	232 ms	225 ms	[6]
rGO	~3.9 kPa 3.9~13.56 kPa	9.13 kPa ⁻¹ 7.29 kPa ⁻¹	6 kPa (80 %)	10000	0.35 s (1.43kPa)	0.39 s (1.43kPa)	[7]
PI/rGO	~0.52 kPa 20~59 kPa	1.33 kPa ⁻¹ 0.002 kPa ⁻¹	60 kPa (80%)	1000	60 ms (0.5%)	70 ms (0.5%)	[8]
PPy/rGO	~1 kPa 1~9 kPa	0.9 kPa ⁻¹ 0.0122 kPa ⁻¹	-	10000	165 ms	132 ms	[9]
MXene/rGO	~0.2 kPa 0.2~2 kPa	6.22 kPa ⁻¹ 2.53 kPa ⁻¹	4.5 kPa (90%)	1250	8 ms	50 ms	[10]
GA-1	~24.97 kPa	32.85 kPa ⁻¹	26.07 kPa (80%)	3500	300 ms (20%)	200 ms (20%)	This Work

 Table S1 Performance comparison of flexible pressure sensors based on rGO aerogel.

Reference:

- 1. Y. B. Zou, Z. Y. Chen, X. Guo, Z. Y. Peng, C. Y. Yu and W. B. Zhong, *ACS Appl. Mater. Interfaces*, 2022, **14**, 17858-17868.
- H. Y. Liu, T. Xu, C. Y. Cai, K. Liu, W. Liu, M. Zhang, H. S. Du, C. L. Si and K. Zhang, *Adv. Funct. Mater.*, 2022, **32**, 2113082.
- 3. S. Wei, X. Y. Qiu, J. Q. An, Z. M. Chen and X. X. Zhang, *Compos. Sci. Technol.*, 2021, **207**, 108730.
- H. Zhu, S. P. Dai, X. S. Zhou, X. Dong, Y. Y. Jiang, Y. W. Chen, N. Y. Yuan and J. N. Ding, *J. Compos. Mater.*, 2021, 55, 3661-3669.
- X. Y. Cao, J. Zhang, S. W. Chen, R. J. Varley and K. Pan, *Adv. Funct. Mater.*, 2020, 30, 2003618.
- M. Zhu, Y. Yue, Y. F. Cheng, Y. Zhang, J. Su, F. Long, X. L. Jiang, Y. Ma and Y. H. Gao, *Adv. Electron. Mater.*, 2019, 6, 1901064.
- J. K. Huang, J. B. Zeng, B. Q. Liang, J. W. Wu, T. G. Li, Q. Li, F. Feng, Q. W. Feng, M. J. Rood and Z. F. Yan, ACS Appl. Mater. Interfaces, 2020, 12, 16822-16830.
- Q. Xu, X. H. Chang, Z. D. Zhu, L. Xu, X. C. Chen, L. B. Luo, X. Y. Liu and J. Q. Qin, *RSC Adv.*, 2021, 11, 11760-11770.
- 9. H. Wei, A. Li, D. Kong, Z. Li, D. Cui, T. Li, B. Dong and Z. Guo, *Adv. Compos. Hybrid Mater.*, 2021, **4**, 86-95.
- L. Liu, J. Zhang, G. Shi, H. Zhang, B. Wang and L. Zhong, J. Mater. Sci., 2022, 57, 11202-11214.