Supporting Information

Rational molecular design of phenanthroimidazole-azine derivatives for efficient non-doped blue organic light-emitting diodes with low-efficiency roll-off

Pongsakorn Chasing, ${ }^{1}$ Jakkapan Kumsampao, ${ }^{1}$ Pattarapapa Janthakit, ${ }^{1}$ Phattananawee Nalaoh, ${ }^{1}$ Thidarat Loythaworn, ${ }^{1}$ Wijitra Waengdongbung, ${ }^{1}$ Praweena Wongkaew, ${ }^{1}$ Taweesak Sudyoadsuk ${ }^{2}$ and Vinich Promarak*1
${ }^{1}$ Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand. E-mail: vinich.p@vistec.ac.th
${ }^{2}$ Frontier Research Center (FRC), Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand.

Synthesis and characterization

Scheme 1 Synthesis pathway

2-(4-Bromophenyl)-1-phenyl-1H-phenanthro[9,10-d]imidazole (1)

A mixture of phenanthrene-9,10-dione $(2.00 \mathrm{~g}, 9.60 \mathrm{mmol})$, aniline (1.30 ml , 14.40 mmol), 4bromobenzaldehyde ($1.78 \mathrm{~g}, 9.60 \mathrm{mmol}$), ammonium acetate (3.70 g 48.02 mmol), and acetic acid (50 mL) was refluxed at $110^{\circ} \mathrm{C}$ for 12 h . The mixture was cooled to room temperature and then poured into ice cold water. The solid product was separated by filtration and washed with water. The crude solid was dissolved in DCM and washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and removed organic solvent, respectively. The crude product was purified by recrystallization from $\mathrm{DCM} / \mathrm{MeOH}$ mixture solvent to give white solids ($2.71 \mathrm{~g}, 63 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.85(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.76(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $8.70(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.44(\mathrm{q}, J=8.5$ $\mathrm{Hz}, 4 \mathrm{H}), 7.26(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.72,138.58$, $137.47,131.44,130.80,130.30,129.99,129.50,129.37,129.03,128.32,128.30,127.35,127.13,126.32$, $125.73,125.04,124.14,123.35,123.14,122.95,122.70,120.84$. HRMS APCI/Q-TOF (m/z): calcd for $\mathrm{C}_{27} \mathrm{H}_{17} \mathrm{BrN}_{2} 448.0575$, found $448.6108\left[\mathrm{M}^{+}\right]$.

1-Phenyl-2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1H-phenanthro[9,10-d]imidazole (2)

Compound $1(1.0 \mathrm{~g}, 2.2 \mathrm{mmol})$, bispinacolatodiboron $(1.7 \mathrm{~g}, 6.7 \mathrm{mmol})$ and potassium acetate $(2.7 \mathrm{~g}, 27.0$ mmol) were suspended in dried toluene (60 ml) under nitrogen atmosphere. Bis(triphenylphosphine)palladium(II) dichloride $\left(\mathrm{Pd}_{(}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}\right)(78 \mathrm{mg}, 0.1 \mathrm{mmol})$ was added and degassed for 15 minutes. The reaction mixture was stirred for 16 hours under reflux, cooled to room temperature. The resulting mixture was filtered through Celite pad, washed by dichloromethane (250 ml) and concentrated in vacuo. The product was purified by recrystallization from dichloromethane and hexane to give grey solids ($0.77 \mathrm{~g}, 70 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.77(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.69(\mathrm{~m}, 3 \mathrm{H}), 7.67-7.64(\mathrm{~m}, ~ J=8.4,7.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.56(\mathrm{~m}, 5 \mathrm{H}), 7.53-7.48$ $(\mathrm{m}, 3 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 134.7$, $130.5,129.2,128.9,128.7,126.7,124.3,123.1,121.0,84.1,24.9$. HRMS APCI/Q-TOF (m/z): calcd for $\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{BN}_{2} \mathrm{O}_{2} 497.2396$; found: $497.1836\left[\mathrm{M}^{+}\right]$.

2-(4-Bromo-3-methylphenyl)-1-phenyl-1H-phenanthro[9,10-d]imidazole (3)

Phenanthrenequinone ($1.0 \mathrm{~g}, 4.8 \mathrm{mmol}$), 4-bromo-3-methylbenzaldehyde ($0.96 \mathrm{~g}, 4.8 \mathrm{mmol}$) were dissolved in acetic acid (25 ml), stirred at room temperature. Aniline ($0.66 \mathrm{ml}, 7.2 \mathrm{mmol}$) was added as dropwise and ammonium acetate $(1.85 \mathrm{~g}, 24.0 \mathrm{mmol})$ was then added to reaction mixture, followed with heat to $110^{\circ} \mathrm{C}$ for 12 hours. After completion reaction was allowed to room temperature and pour into ice bath. The crude solid was filtered and washed with water. Filtered solid was dissolved in dichloromethane, washed with water (4 x $30 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The product was purified by recrystallization in dichloromethane/methanol to give grey solids $(1.89 \mathrm{~g}, 85 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.85(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 8.76(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.58(\mathrm{~m}, 5 \mathrm{H})$,
$7.50(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=8.3$, $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.8,138.5,136.9,134.3,131.3,131.2,131.1$, $130.5,130.3,129.5,129.2,128.5,128.4,128.2,128.1,127.4,126.7,122.6$. HRMS APCI/Q-TOF (m/z): calcd for $\mathrm{C}_{28} \mathrm{H}_{19} \mathrm{BrN}_{2} 463.3780$; found: $463.0142[\mathrm{M}]^{+}$.

2-(3-Methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1-phenyl-1H-phenanthro[9,10-
d]imidazole (4)
Compound $3(1.0 \mathrm{~g}, 2.2 \mathrm{mmol})$, bispinacolatodiboron $(1.6 \mathrm{~g}, 6.5 \mathrm{mmol})$ and potassium acetate $(2.7 \mathrm{~g}, 27.0$ mmol) were suspended in dried toluene (50 ml) under nitrogen atmosphere. Bis(triphenylphosphine)palladium(II) dichloride $\left(\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}\right)(76 \mathrm{mg}, 0.1 \mathrm{mmol})$ was added and degassed for 15 minutes. The reaction mixture was stirred for 16 hours under reflux, cooled to room temperature. The resulting mixture was filtered through Celite pad, washed by dichloromethane (250 ml) and concentrated in vacuo. The product was purified by column chromatography on silica gel eluting with hexane:dichloromethane (3:2) to give white solids ($1.10 \mathrm{~g}, 97 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.89$ (dd, $J=$ $8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.77(\mathrm{dd}, J=8.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{dd}, J=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{td}, J=8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.67-7.57(\mathrm{~m}, 6 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 2 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 12 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \delta 150.9,144.8,138.9,137.5,135.8,132.4,130.8,130.1,129.7,129.3,129.1$, $128.3,128.2,127.3,127.3,126.2,125.6,125.2,124.8,124.1,123.1,122.8,120.9,83.6,24.9,22.2$. HRMS APCI/Q-TOF $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{34} \mathrm{H}_{31} \mathrm{BN}_{2} \mathrm{O}_{2} 511.2512$; found: $511.2681\left[\mathrm{M}^{+}\right]$.

Single-crystal X-ray diffraction

Table S1. Crystallographic data of TrBPI, 2PyBPI and 2PyTPI

compound	TrBPI	2PyBPI	2PyTPI
CCDC deposition number	2281463	2059962	2281464
Empirical formula	$\mathrm{C}_{48} \mathrm{H}_{31} \mathrm{~N}_{5}$	$\mathrm{C}_{49} \mathrm{H}_{32} \mathrm{~N}_{4}$	$\mathrm{C}_{50} \mathrm{H}_{34} \mathrm{~N}_{4}$
Formula weight	677.78	676.78	690.81
Temperature/K	100.00	100.0	100.00
Crystal system	triclinic	monoclinic	monoclinic
Space group	$\mathrm{P}-1$	$\mathrm{P} 2_{1} / \mathrm{c}$	$\mathrm{P} 2_{1} / \mathrm{n}$
a / \AA	$8.8289(10)$	$8.8710(8)$	$15.5261(12)$
b / \AA	$9.4225(10)$	$41.168(4)$	$11.0720(9)$
c / \AA	$21.063(2)$	$9.5464(8)$	$23.3012(18)$
$\alpha /{ }^{\circ}$	$80.889(4)$	90	90
$\beta /{ }^{\circ}$	$83.911(4)$	$101.567(3)$	$100.221(3)$
$\gamma /{ }^{\circ}$	$78.595(4)$	90	90
Volume $/ \AA^{3}$	$1690.9(3)$	$3415.6(5)$	$3942.0(5)$
Z	2	4	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.331	1.316	1.164
μ / mm^{-1}	0.079	0.078	0.068
$\mathrm{~F}(000)$	708.0	1416.0	1448.0

Crystal size/ mm^{3}	$0.28 \times 0.14 \times 0.08$	$0.253 \times 0.214 \times 0.134$	$0.274 \times 0.26 \times 0.02$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$	$\operatorname{MoK} \alpha(\lambda=0.71073)$	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection $/{ }^{\circ}$	3.928 to 52.776	4.466 to 55.754	3.552 to 50.146
Index ranges	$\begin{aligned} & -11 \leq \mathrm{h} \leq 11, \\ & -11 \leq \mathrm{k} \leq 11, \\ & -26 \leq 1 \leq 26 \end{aligned}$	$\begin{aligned} & -11 \leq \mathrm{h} \leq 11, \\ & -54 \leq \mathrm{k} \leq 54, \\ & -10 \leq 1 \leq 12 \end{aligned}$	$\begin{aligned} & -18 \leq \mathrm{h} \leq 18, \\ & -13 \leq \mathrm{k} \leq 13, \\ & -27 \leq 1 \leq 27 \end{aligned}$
Reflections collected	61351	52950	238086
Independent reflections	$\begin{gathered} 6905\left[\mathrm{R}_{\text {int }}=0.0384,\right. \\ \left.\mathrm{R}_{\text {sigma }}=0.0223\right] \end{gathered}$	$\begin{gathered} 8161\left[\mathrm{R}_{\text {int }}=0.0611,\right. \\ \left.\mathrm{R}_{\text {sigma }}=0.0488\right] \end{gathered}$	$\begin{gathered} 6990\left[\mathrm{R}_{\text {int }}=0.1058,\right. \\ \left.\mathrm{R}_{\text {sigma }}=0.0239\right] \end{gathered}$
Data/restraints/parameters	6905/0/478	8161/0/479	6990/0/488
Goodness-of-fit on F^{2}	1.054	1.027	1.113
Final R indexes [$1>=2 \sigma$ (I$)$]	$\begin{gathered} \mathrm{R}_{1}=0.0388, \\ \mathrm{wR}_{2}=0.0952 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0494, \\ \mathrm{wR}_{2}=0.1076 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0616, \\ \mathrm{wR}_{2}=0.1245 \end{gathered}$
Final R indexes [all data]	$\begin{gathered} \mathrm{R}_{1}=0.0454, \\ \mathrm{wR}_{2}=0.1042 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0731, \\ \mathrm{wR}_{2}=0.1172 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0986, \\ \mathrm{wR}_{2}=0.1619 \end{gathered}$
Largest diff. peak/hole / e \AA^{-3}	0.26/-0.27	0.33/-0.29	0.41/-0.38

Fig. S1 DSC ($2^{\text {nd }}$ scan) and TGA thermograms measured at a heating rate of $10^{\circ} \mathrm{C} / \mathrm{min}$ under N_{2} flow.

Fig. S2 a), c) TRES maps and b), d) integrated TRES slices of prompt PL and TRES PL@3 ms spectra of the neat films and $2 \mathrm{wt} \%$ doped poly(4-bromostyrene) films covered by EXCEVAL ${ }^{\text {TM }}$ film coated on fused silica substrate

Fig. S3 Transient PL decay spectra in different solvents.

Fig. S4 Cyclic voltammograms measured in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing n - $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ at a scan rate of $50 \mathrm{mV} / \mathrm{s}$ under Ar atmosphere.

Fig. S5 EL spectra at different applied voltages.

Fig. S6 Copies of ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right),{ }^{13} \mathrm{C}-\mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and HRMS mass spectra.

Compound 1

Compound 2

Compound 3

AW03-71-1st-RC1
CP_PROTON8 CDCl3 \{D: \VISTEC NMR DatalVP\} vpprw 15

AW03-71-1st-RC1-512
CP_C13CPD CDCl3 \{D: \VISTEC NMR DatalVP\} vpprw 15

Compound 4

Compound 2PyTPI

Compound 2PyBPI

Compound 4PyBPI

Compound TrBPI

