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S.1 Conformation Sampling Algorithm 

Here, we describe an algorithm (Fig. S1) to sample the conformations of small molecules and 

demonstrate its working and applicability with the help of 3 simple biphenyl and para-terphenyl 

molecules (Fig. S2). In the main manuscript, the algorithm is applied to the TPx breadboard 

molecules to enumerate their initial geometries as well as obtain distinct DFT optimized 

structures. Our algorithm improves previous methods1,2 by accounting for molecular 

symmetries while enumerating conformations to reduce the number of structures to be 

processed. The flowchart in Fig. S2 describes the steps of the algorithm where conformational 

degrees of freedom of the molecule (only dihedral angles which lead to conformational 

flexibility (cf-DAs)) are combined as a vector (𝑣) and molecular rotational symmetries are 

given by rotation and translation matrices (𝑟 ∈ 𝑅, the space of all symmetry operations) 

operating on 𝑣. Note that here we consider molecular symmetries based on the connectivity 

of atoms within the molecule rather than the actual symmetry elements present in the molecule 

which get perturbed by simple dihedral rotations. Thus, 𝑟 are permutation matrices which are 

chosen such that they exchange/permute cf-DAs while maintaining the same atom connectivity 

graph. The matrices 𝑟 represent rotation of either the molecule or its fragments. A molecular 

rotation does not change molecular conformation but leads to a different viewing angle for an 

observer, which helps eliminating redundancies of identical conformations. Likewise, fragment 

symmetries provide a new perspective of the molecule upon rotating the fragment around the 

bond connecting it to the rest of the molecule by an angle related to its symmetry (for example, 

if a fragment has 𝐶2 symmetry, a rotation of 180 keeps the conformation intact with few 

exchanges of cf-DAs in 𝑣). The dimension of 𝑣 is the same as the number of cf-DAs present 

in the molecule. The sequence of cf-DAs in 𝑣 determines the symmetry matrices to be 

constructed for the molecular rotations. Below we demonstrate the algorithm on biphenyl, para-

terphenyl, and meta-terphenyl molecules possessing only 1, 2, and 2 torsional degrees of 

freedom respectively (Fig. S1).  



Biphenyl: Rotation about single bond connecting the two phenyl rings is the only cf-DA in 

biphenyl molecule (𝑛 = 1). With discretization Δ𝜃1 =90, 𝜃1 (Fig. S1) can take 4 values (𝑄𝑖 =

4; 𝑖 = 1). With these specifics, total number of conformations possible for biphenyl are 4 (𝑃 = 

4). The 1D conformational angle vectors are written as: 𝑣1 = [0], 𝑣2 = [90], 𝑣3 = [180], 𝑣4 =

[270]. Molecular rotation symmetries do not affect the angle vectors 𝑣1-𝑣4. However, phenyl 

ring (a molecular fragment) in the molecule has 𝐶2 (= 𝑟1 and 𝑟3 for the two phenyl rings 

respectively) symmetry which implies that rotation of phenyl torsion (≡ 𝜃1) by 180 leads to a 

same conformation. Thus, the rotational symmetry 𝑟 of the phenyl fragment is a 1 × 1 matrix 

 

Fig. S1: Flowchart to enumerate conformations of the small molecules. 



which translates 𝜃1 by 180, 𝑟2 = [180] leading to the conformations corresponding to 𝑣1 and 

𝑣2 be identical to 𝑣3 and 𝑣4 respectively. Conclusively, for Δ𝜃1 = 90, symmetry elements 

reduce the number of conformations of biphenyl from 4 to 2 (Table S1).  

Para and meta-terphenyl: There are two cf-DAs in terphenyl molecules which are torsional 

rotations between adjacent phenyl rings (𝑛 = 2). With discretization Δ𝜃𝑖 =90, 𝜃1 and 𝜃2 (Fig. 

S1) can take 4 values (𝑄𝑖 =  4; 𝑖 = 1,2). With these specifics, total number of conformations 

possible for terphenyls are 16 (𝑃 = 𝑄1 × 𝑄2 = 4
2). Two-dimensional conformational angle 

vectors can be written as: 𝑣1 = [0, 0]
𝑇, 𝑣2 = [0, 90]

𝑇, 𝑣3 = [0, 180]
𝑇, ⋯ 𝑣16 = [270, 270]. 

One of the molecular rotational matrices for terphenyl molecules is a matrix which leads to 

exchange of 𝜃1 and 𝜃2: 

 𝑟1 = (
0 1
1 0

) (S1) 

 Other rotations include addition of rotation angle to the two-dimensional angle vector 

(translation of vectors by the angle of molecular rotation) for para-terphenyl. For Δ𝜃𝑖 = 90, 

addition of vector  𝑟2 = [90, 90] to 𝑣1-𝑣16 rotates the molecule by 90 along the line joining 

 

Fig. S2: Biphenyl, para-terphenyl, and meta-terphenyl molecules with 1, 2, and 2 conformational degrees of 

freedom (𝜃1 and 𝜃2) by rotations about the bonds connecting two rings (red arrow).  

Table S1: Total possible and distinct conformations of three breadboard molecules. Here, 𝑛, 𝑄𝑖 , and 𝑃 are number 

of rotatable dihedrals, number of values for 𝑖𝑡ℎ dihedral torsion, total number of possible angle vectors 

respectively. 𝐷 is number of distinct initial conformations and 𝐷𝑒𝑛 is number of distinct initial conformations after 

eliminating enantiomers.  

Molecule 𝒏 𝑸𝒊 𝑷 𝑹(a) 𝑫 𝑫𝒓𝒆𝒏 

Biphenyl 1 4 4 𝑟1, 𝑟2, 𝑟3 2 2 

Meta-terphenyl 
2 4, 4 42 = 16 

𝑟1, 𝑟2, 𝑟3, 𝑟4 3 3 

Para-terphenyl 𝑟1, 𝑟3, 𝑟4 3 3 

TPm 

6 4, 4, 4, 4, 4, 4 42 = 4096 

𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5 288 168 

TPo 𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5 288 168 

TPp 𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑟6 24 23 
(a)Each of symmetry elements is defined in the text for corresponding molecule. 



three phenyl rings, 𝑟2
4 (𝑟2 applied 4 times) is equal to Identity. Translation of vectors is required 

only when all the cf-DAs lie on a line. Therefore, for meta-terphenyl there is only one molecular 

rotational matrix (Eqn. S1). Moreover, the phenyl ring has 𝐶2 (translations 𝑟3 = [0, 180]
𝑇 and 

𝑟4 = [180, 0]
𝑇 to 𝑣1-𝑣16 for two terminal phenyl rings respectively) symmetry which further 

reduces the number of conformations for the terphenyl molecules. Note that fragment 

symmetry (𝑟3 and 𝑟4) appears as a translation of one DA around the bond connecting the 

fragment. Finally, by applying all symmetry elements on the vectors 𝑣1-𝑣16,  the number of 

conformations reduces from 16 to 3 (Table S1). Note that, in practice, we eliminate the 

redundant conformations by adding a new vector 𝑣𝑖 to an existing set of vectors 𝑉, only if 

symmetry operations on 𝑣𝑖 does not lead a vector 𝑣𝑗  ∈ 𝑉. 

TPx breadboard: In the main manuscript we present application of the algorithm to the 3 

breadboard molecules (TPm, TPo, and TPp). Symmetry matrices (listed in Table 1) for the 3 

breadboards are: 

 

𝑟1 =

(

  
 

0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0)

  
 

  (S2.) 

 

 

𝑟2 =

(

  
 

0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0)

  
 

  (S3) 

 

 

𝑟3 =

(

  
 

0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0)

  
 

  

 

(S4) 

 



 

𝑟4 =

(

  
 

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0)

  
 

 + translation of angle 𝜃4 by 180 (S5) 

 

 

𝑟5 =

(

  
 

0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1)

  
 

 + translation of angle 𝜃3 by 180 

 

(S6) 

 

 𝑟6 =  𝐶2 symmetry for peripheral pyridyl rings with N-atom at para position. 

𝑟6 represents the translation of DA about the bond connecting pyridyl ring to 

rest of molecule by 180°. 

 

(S7) 

Here, 𝑟1-𝑟3 are the molecular symmetry matrices, 𝑟4 and 𝑟5 are the fragment symmetry matrices 

for terpyridine arms, and 𝑟6 is the fragment symmetry matrix for the peripheral pyridyl rings 

which possess symmetry in TPp molecule only. 



S.2 Conformational States of TPx Before and After Optimization  

The terpyridine arms in TPx molecules have two peripheral pyridyl rings. The stereochemistry 

of the linking N-atoms in the peripheral pyridyl rings impact the conformations of the 

breadboard molecules. In the extreme conjugation cases adjacent rings are either in plane or 

perpendicular to each other. The N-atom on a peripheral ring in TPm and TPo can face towards 

the core N-atom (Fig. S3A) or away (Fig. S3B) when the peripheral and core rings are planar 

to each other. Alternatively, when peripheral and core rings are perpendicular to each other, 

the peripheral N-atom can either point up (Fig. S3C) or down (Fig. S3D) relative to the plane 

of core ring in the terpyridine arm. We start with 168, 168, 23 conformations of TPm/o/p 

respectivey which have extreme conjugations and then optimized them using using DFT with 

B3LYP exchange-correlation functional and the 6-31G* basis set in Gaussian 09 revision 

D.01.3 Adjacent ring DAs (𝜃1-𝜃6) for initial conformations are shown in Fig. S4A-C. After 

optimization, conformations fall in certain local minima. We bin the optimized DAs (𝜃1-𝜃6) in 

Fig. S3: Peripheral and core rings are: (A) in plane and peripheral N atom is facing towards the core N-atom (red 

arrow), (B) in plane and peripheral N atom facing away from the core N-atom (red arrow), (C) perpendicular to 

each other and peripheral N atom points up relative to core ring (red arrow), and (D) perpendicular to each other 

and peripheral N atom points down relative to core ring (red arrow).  



Fig. S4D–F. The stereochemistry of N-atoms is present for optimized conformations as well, 

however, the angle for pointing in and out or up and down for the peripheral N-atoms changes. 

After optimization adjacent ring DAs between peripheral and core rings are not continuous but 

Fig. S4: Adjacent ring dihedral angles for initial conformations of (A) TPm, (B) TPo, and (C) TPp; and for the 

optimized conformations of (D) TPm, (E) TPo, and (F) TPp. The core dihedral angles lie in the same interval for 

optimized conformations of three breadboards allowing us to use 3rp circuit as a reference circuit (compare black 

bars in D-F). 



rather fall in certain intervals. In an absolute sense, the angle between adjacent ring planes (i.e., 

neglecting stereochemistry of N-atoms) are in the intervals 18-26° (peripheral DAs in TPm and 

TPp), 31-40° (core DAs for three molecules and peripheral DAs for a few conformations of 

TPo), and 1-3° (peripheral DAs for major contributing conformations of TPo which lead to 

almost planar terpyridine arms of TPo). Thus, the conformations of TPm and TPp have similar 

dihedral angles whereas TPm and TPo differ significantly. Further, terpyridine arms in TPo 

adopt more planar conformations. On the other hand, the core dihedral angles across three 

breadboards remain similar indicating similar conformational states for the 3rp circuit, 

although peak heights in Fig. S4D-F (black histograms) are different. Nonetheless, there are 

only two conformational states for 3rp across TPx breadboards (see section S4 for 

representative structures).   

 

S.3 Free Energies of Molecular Conformations 

 

S.4 Multiple Conductance States for TPx Basis Circuits and the Corresponding Representative 

Conformations 

The basis circuit conductance distributions across the three breadboards often show multiple 

peaks (see Figs. 2D–2F and Figs. S6–S8). For instance, the 2r circuit (blue data in Figs. 2D-2F 

and Figs. S6–S8) shows two (log(𝐺/𝐺𝑚𝑎𝑥) peak values each for TPm and TPo (ca. −0.95 and 

−1.1 for TPm and ca. 0 and −0.1 for TPo) but only a single peak for TPp (around −0.1). Multiple 

peaks arise from the contributions to the circuit conductance by 12 distinct conformational 

Fig. S5: Free energies of all optimized conformations of (A) TPm, (B) TPo, and (C) TPp as a function of (arbitrary) 

conformation index. Geometrically distinct conformations are marked by black circles. 



states (termed CS1–CS12) of the breadboards (Figs. S6–S8). We define these conformational 

states in terms of the stereochemistry of the peripheral N atoms (either pointing toward or away 

from the core N atom) for 2r, 3rm, 4r, and 5r circuits and the angle of the two flanking pyridyl 

rings (~0° or ~75°) relative to the central phenyl ring for 3rp circuit. Fig. S6 assigns the 

multiple conductance peaks (2, 3, 2, 2, and 3) for 2r–5r basis circuits in TPm to the 12 

conformational states. On the other hand, the symmetric para placement of N atoms in TPp 

precludes distinct stereochemistry for the peripheral N atoms, and thus the 2r, 4r, and 5r circuits 

in this breadboard show only single peak (Fig S7). The 3rm and 3rp circuits for TPp show two 

conductance peaks—which, for the latter, can be assigned to CS6 and CS7. However, the two 

conductance peaks for 3rm circuit cannot be assigned uniquely to any of the 12 conformational 

states, and we present representative conformations for these peaks in Fig S7. In Fig. S8, we 

assign the conductance states for the TPo circuits to the conformational states. While the 3rm 

and 4r circuits show multiple conductance subpopulations within an assigned conformational 

state (CS3 and CS8, respectively), the 4r circuit shows a broad conductance distribution which 

cannot be assigned to any specific conformational state, and we show representative 

geometries. As noted earlier, not all breadboard conformations contribute significantly to the 

final conductance statistics. Specifically, the relative populations / peak heights in the 

conductance distributions in Figs. 2D–2F are influenced by the Boltzmann weights for the 

conformations in Figs. 2A–2C. For instance, the 2r TPo circuit (blue histogram in Fig 2E) 

shows two conductance peaks differing by five orders of magnitude, with the higher 

conductance peak (𝑤𝑖
𝐵 > 0.99) arising from CS2 (Fig. S8) and the lower conductance peak (𝑤𝑖

𝐵 

~10−5) arising from CS1, (Fig. S8). On the other hand, in a 2r TPm circuit (blue histogram in 

Fig 2D), both states CS1 and CS2 (Fig. S6) are significantly populated (𝑤𝑖
𝐵 ~0.35 and ~0.65, 

respectively) leading to two conductance peaks of unequal (but comparable) heights for the 2r 

circuit. In contrast, the conductance of a 2r TPp circuit arises from a single conformation. Thus, 

this section demonstrates the complexity of the TPx breadboard conformational space and the 

need for a rigorous accounting of their contributions to the conductance statistics. The resultant 

conductance distributions shown in Figs. 2D–2F, which are obtained in the absence of REA, 

showcase the possibility of QIE within and across the breadboard molecules. In the main text, 

we portray the effect of QIE more clearly and examine the combined effect of REA and QIE 

for tuning the conductance distributions of the basis circuits across the three breadboard 

scaffolds. 



 

 

Fig. S6: Scatter plots for the logarithmic conductance of 5 basis circuits in all the distinct conformations of TPm. 

The logarithmic conductance is plotted as function of composite angles which define conformational state for a 

particular basis circuit. The composite angle is related to in and out conformations of peripheral N-atoms (section 

S2) in case of 2r, 3rm, 4r, and 5r circuits while it is related to angle between the core pyridyl rings in case of 3rp. 

The corresponding conformational states for basis are shown inside the plot. The multiple conductance states for 

basis circuits correlate well with the conformational states. However, for a few circuits multiple peaks are not 

resolved (for instance, 5r circuit). 𝜃𝑃, 𝜃𝑃1, 𝜃𝑃2, 𝜃𝐶1, and 𝜃𝐶2 are the dihedral angles for the corresponding circuit. 



 

 

Fig. S7: Scatter plots for the logarithmic conductance of 5 basis circuits in all the distinct conformations of TPp. 

For TPp, due to para placement of peripheral N-atoms, each of 5 basis circuits exist in its single conformational 

state (except 3rp circuit). The logarithmic conductance is plotted as function of composite angles which is defined 

in Fig. S6 (conformational state for the basis circuit).  



 

 

Fig. S8: Scatter plots for the logarithmic conductance of 5 basis circuits in all the distinct conformations of TPo. 

The logarithmic conductance is plotted as function of composite angles which define conformational state for a 

particular basis circuit. The composite angle is related to in and out conformations of peripheral N-atoms (section 

S2) in case of 2r, 3rm, 4r, and 5r circuits while it is related to angle between the core pyridyl rings in case of 3rp. 

The corresponding conformational states for basis are shown inside the plot. The multiple conductance states for 

basis circuits correlate well with the conformational states. However, for a few circuits multiple peaks are not 

resolved (for instance, 5r circuit). Furthermore, circuits in TPo shows multiple conductance states corresponding 

to single conformational state (3rm and 4r circuits). 𝜃𝑃, 𝜃𝑃1, 𝜃𝑃2, 𝜃𝐶1, and 𝜃𝐶2 are the dihedral angles for the 

corresponding circuit where P and C denotes the peripheral and core angles. 

 

 



 

S.5 End-to-end Basis Circuit lengths in TPx Breadboards 

 

S.6 Decomposition of transmission into pure and interference terms 

To demonstrate multi-orbital constructive and destructive quantum interference on simpler 

benzene system, we first discuss a simple case wherein the Hamiltonian is given by Hückel 

model and Fermi level (𝐸𝑓) is placed at the band gap center. Subsequently, we discuss QIE 

with a more realistic INDO/s Hamiltonian for benzene and wherein 𝐸𝑓 = −5.1𝑒𝑉 is not placed 

at band gap center. Finally, the analysis demonstrated for benzene is used to describe multi-

orbital DQI for all the basis circuits in TPx breadboards. In the main manuscript, the DQI for 

a 2r circuit in TPx breadboards is explained. Fig. S10 shows the pure contributions from 

molecular orbitals (MOs), interference between pairs of MOs, and the multi-orbital QIE for 

both the Hamiltonians— Hückel and INDO/s—for benzene when connected to electrodes at 

ortho, meta and para positions. The 𝒬–factor analysis4 and multi-orbital QIE are described in 

main manuscript (Methods subsection 5.3). For the simple Hückel model, there are only six 

molecular orbitals wherein the two filled (HOMO and HOMO’) and two unfilled (LUMO and 

LUMO’) orbitals are nearly degenerate.4 It is evident from the heatmaps in Fig. S10A–C that 

major contributions come from the constructive (ortho and para connected benzene) and 

destructive (meta connected benzene) QIE between one of the two nearly degenerate HOMOs 

and one of the two nearly degenerate LUMOs. Nonetheless, all the three systems show CQI as 

Fig. S9:  End-to-end distance averaged over molecular conformations for (A) TPm and TPp, (B) TPm and TPo. 

A B



well as DQI among the MOs. To analyze the overall effect of multi-orbital QIE, we plot 

cumulative 𝒬-matrix elements in Fig. S10D–F. The cumulative sum of the off-diagonal 

elements (X(𝑛 = 6) = ∑ (𝒬𝑖𝑗 + 𝒬𝑗𝑖)
6
𝑖,𝑗<𝑖  in Fig. S10D–F) indicates that ortho and para 

connected benzene show overall CQI (X(𝑛 = 6) > 0); on the other hand, the meta connected 

benzene exhibits overall DQI (X(𝑛 = 6) < 0). The net effect of QIE is that conductance of 

ortho and meta connected benzene are higher than that of meta connected benzene (see Z(𝑛 =

6) in Fig. S10D–F). Next, we move our attention to more realistic benzene system described 

by INDO/s Hamiltonian and electrode Fermi energy placed at −5.1𝑒𝑉. For the INDO/s 

Hamiltonian, there are only 10 MOs (out of 30) that show significant pure contributions and 

interfere with each other (Fig. S10G–L). In this case as well, dominant contributions arise from 

the CQI (ortho/para connected benzene) and DQI (meta connected benzene) between one of 

the two nearly degenerate HOMOs and one of the two nearly degenerate LUMOs. For the 

INDO/s Hamiltonian of benzene, the multiorbital interference patterns reveals that only the 

ortho system exhibits CQI (X(𝑛 = 30) > 0 in Fig. S10J); while meta and para system exhibit 

DQI (X(𝑛 = 30) < 0 in Fig. S10K–L). Nonetheless, extent of DQI in para connected benzene 

is very low i.e. X(𝑛 = 30) is small relative to Y(𝑛 = 30) in Fig. S10L. Overall, differing 

extents of multi-orbital QIE lead to much higher conductance for ortho and para connected 

benzene relative to meta connected benzene (Z(𝑛 = 30) in Fig. S10J–L). The framework 

described for benzene is applied to TPx breadboards to interpret the boosts and suppressions 

in conductance of basis circuits within and across breadboards. Fig. S11 shows that there is 

overall muti-orbital DQI (X(𝑛 = 192) < 0) for all the basis circuits in three TPx breadboard 

systems (single instances of basis circuits from the most thermally accessible conformation of 

a particular breadboard molecule have been shown). Asymmetry between the cumulative pure 

∑ 𝒬𝑖𝑖𝑖  and interference ∑ (𝒬𝑖𝑗 + 𝒬𝑗𝑖𝑖,𝑗<𝑖  terms about cumulative 𝒬𝑖𝑗 = 0 line (in each panel of 

Fig. S11) determines the extent of DQI and final conductance of basis circuits. Further, the 

total transmission is dominated by strong pure and interference contributions from MOs 80–

100 for the TPx systems (data between two black vertical lines in Fig. S11). 

 Figs. S12–14 show the full heatmap to visualize the pure and interference contributions 

between the pairs of MOs for a 2r circuit in the thermally most accessible conformations of 

TPm, TPp, and TPo. While both DQI and CQI are present between the MOs for a 2r circuit as 

shown in Figs. S12–14, the overall interference is DQI. The DQI between a pair of MOs 

originates from either change in amplitude sign of the orbital on N-atoms plus/or the lower 

electron density on the N-atoms as described in main manuscript. 



 as well as obtain distinct DFT optimized struct 

 

Fig. S10: (A–C and G–I) Heatmaps for ortho/meta/para connected benzene to visualize the pure and interference 

terms using Hückel and INDO/s Hamiltonian. (B) and (C) have been reproduced from ref 4. (D–F and J–L) 

Cumulative (sum over orbitals) 𝒬-matrix elements for ortho/meta/para connected benzene to demonstrate the 

multi-orbital QIE. Here, cumulative diagonal Y(𝑛) = ∑ 𝒬𝑖𝑖
𝑛
𝑖  (cyan), off-diagonal X(𝑛) = ∑ (𝒬𝑖𝑗 + 𝒬𝑗𝑖

𝑛
𝑖,𝑗<𝑖 ) 

(magenta), and the overall transmission Z(𝑛) = X(𝑛) + Y(𝑛) (blue) is plotted. 𝐸𝑓 = 0 (band gap center) for 

Hückel Hamiltonian and 𝐸𝑓 = −5.1𝑒𝑉 for INDO/s Hamiltonian. 

 



 

 

Fig. S11: Cumulative diagonal terms Y(𝑛) = ∑ 𝒬𝑖𝑖
𝑛
𝑖  (magenta points), off-diagonal terms X(𝑛) = ∑ 𝒬𝑖𝑗

𝑛
𝑖≠𝑗  (cyan 

points), and the overall cumulative current Z(𝑛) = X(𝑛) + Y(𝑛) for 5 basis circuits of highest thermally accessible 

conformation (blue/green/red points for TPm/p/o respectively). REA effects are not considered here (all N/C atoms 

have equal electrode accessibilities). 

 



 

 

 

 

 

 

 

 

 

 

 

Fig. S12: Heatmap for all the MOs showing pure and interference terms between pairs of CMOs for 2r circuit in 

TPm wherein contributions for MO80–100 has been shown in main text Fig. 3D. 



 

 

 

 

 

 

 

 

 

 

Fig. S13: Heatmap for all the MOs showing pure and interference terms between pairs of CMOs for 2r circuit in 

TPp wherein contributions for MO80–100 has been shown in main text Fig. 3E. 



 

 

 

 

Fig. S14: Heatmap for all the MOs showing pure and interference terms between pairs of CMOs for 2r circuit in 

TPo wherein contributions for MO80–100 has been shown in main text Fig. 4C. 



S.7 Solvent Accessible Surface Area of N-atoms in TPx Breadboards 

Fig S15 shows the solvent accessible surface area (SASA) for all the anchoring atoms in the 3 

breadboard molecules. SASA is computed by 

rotating a single gold atom with van der Waals 

radius of 1.66Å around the nitrogen anchoring 

groups in breadboards restricted by rest of the 

molecule. Clearly, SASA for core N-atoms across 

TPm/o/p is similar (slightly higher for TPo) 

indicating almost similar REA for the core N-

atoms across three breadboards. However, SASA 

for peripheral N-atom in TPo molecule is lower 

relative to TPm/p, while peripheral N-atoms in 

TPm and TPp show similar SASA values. That is 

why, REA for peripheral N-atoms in the TPo is 

lower that of TPm/p which subsequently affects 

the conductance of basis circuits in the 3 

breadboards (see Results in main text). Brown 

data point in Fig. S15 represents the SASA for 

ortho-placed carbon atoms within the TPm breadboard with peripheral dihedral angle of ~19-

26° relative to ~0-3° in TPo (Fig. S4). Thus, the accessibility of the N-atoms in TPo should 

increase with increase in the peripheral dihedral angles (different conformations). Based on 

these calculations we assume that the electrode can freely coordinate with peripheral ring 

meta/para N atoms but is sterically occluded from contacting peripheral ring ortho N atoms 

and the core ring N atom.  

 

S.8 Transferability of REA model to systems other than TPx 

Here, we demonstrate that the REA model we developed is not limited to the TPx breadboards 

only, but is applicable for other molecular junctions as well. We choose a simpler variation of 

the widely studied oligo(phenyleneethynylene) (OPEs) systems (Fig. S16) and calculate the 

REA for anchoring atoms using the procedure described in Methods subsection 5.4. The REA 

data (𝛼 values) for three systems in Fig. S16 is provided in Table S2. 

 

Fig. S15: Solvent accessible surface area 

(SASA) of peripheral and core linking N-atoms 

in TPm, TPo, and TPp. SASA value for ortho 

carbon atom of TPm molecule (brown point) 

indicates increase in SASA for peripheral N-

atom in TPo with the peripheral dihedral angle. 

van der Waals radius for Au atom was taken as 

1.66Å. 



 

 

 

Fig. S16: Modified OPE molecules and corresponding screening distances. (A–B) OPE1 has both the N-atoms 

less accessible to the electrodes, (C–D) OPE2 and OPE3 molecules have fully electrode accessible N-atoms as 

well as less accessible N-atom. In (E), we show the calculation of 𝑑ℎ for core atom. Similarly, 𝑑ℎ for peripheral 

N-atom in OPE1 can be calculated. 



 

 

 

 

Table S2: Screening distances as a function of the tilt angle 𝜙 and the corresponding attenuation factors (𝛼) for 

peripheral (𝑝) and core (𝑐) N-atoms in the modified OPEs (Fig. S10). The average bond length 𝑏1 = 1.40Å and 

𝑏2 = 1.2Å for the C=C and C≡C bonds, respectively in the modified OPEs.  

Molecule 𝒅𝒑(𝝓)(a) 𝑑𝑒𝑓𝑓
𝑝
(Å) 𝜶𝒑

(b) 𝒅𝒄(𝝓)(a) 𝑑𝑒𝑓𝑓
𝑐  𝜶𝒄

 (b) 

OPE1 
1

2
𝑏1𝑠𝑖𝑛𝜙 0.45 0.26 

(4𝑏1 + 𝑏2)𝑠𝑖𝑛𝜙 
2.16 1.5 × 10−3 

OPE2 0 0 1 (4𝑏1 + 𝑏2)𝑠𝑖𝑛𝜙 2.16 1.5 × 10−3 

OPE3 0 0 1 (4𝑏1 + 𝑏2)𝑠𝑖𝑛𝜙 2.16 1.5 × 10−3 

(a) For core N-atom, 𝑑(𝜙) = 𝑑𝑣𝑐𝑜𝑠𝜙+ 𝑑ℎ𝑠𝑖𝑛𝜙 is same for OPEs. Note that OPEs systems are planner; 

therefore, averaging over molecular conformations is not required. Further, 𝑑𝑣 = 0 and 𝑑ℎ = 3.4Å.  

(b) Attenuation factors computed as 𝛼 = exp(−𝛽𝑑𝑒𝑓𝑓) and 𝑑𝑒𝑓𝑓 = 〈𝑑(𝜙)〉𝜙. The brackets 〈 〉𝜙 represent an 

averaging over the tilt angle 𝜙 as given by Eqn. 10. 

 

 



S.9 Conductance of Basis Circuits 

 

S.10 Incoherent Contributions to the Basis Circuit Conductance  

We use Landauer-Büttiker probe (LBP) method to investigate the decoherence effects 

(incoherent current) in the charge transport through five basis circuits in TPx breadboards. In 

LBP method, the incoherent effects are included in phenomenological manner. The LBP 

method is described elsewhere.5,6 To incorporate the phase decoherence effects, molecular sites 

are coupled to the probe electrodes which can exchange particles. The Büttiker probes absorb 

current from the molecular bridge and re-inject it to the bridge with a random phase. However, 

for TPx molecules, identifying the orbitals to attach to the probe reservoirs presents a challenge. 

From the analysis of the decomposed current, it is evident that orbitals near HOMO and LUMO 

are major contributors to the overall conduction through the basis circuits (see subsections 2.2 

and 2.3 in main manuscript and section S.6 in the ESI). These majorly contributing MOs are 

𝜋-character dominated, formed by 𝑝𝑧 orbitals of C/N atoms in the three molecules. Therefore, 

we connect Büttiker probes to each of the 𝑝𝑧 orbital of C/N atoms, thus, a total of 42 probes 

getting attached to each of TPx molecules. The Green`s for the system is given by: 

 

𝒢(𝐸) = [𝐸𝐼 − 𝐻 − (ΣL + Σ𝑅 +∑Σ𝑃 

42

𝑃=1

)]

−1

 (S8) 

Table S3: ⟨log(𝐺/𝐺3𝑟𝑝
𝑇𝑃𝑚)⟩ given by Eqn. 13 and standard deviations in log(𝐺/𝐺3𝑟𝑝

𝑇𝑃𝑚) over molecular 

conformations (Eqns. 14 and 15) for 5 basis circuits in TPx breadboards. Conductance values are normalized with 

respect to 3-ring para circuit conductance in TPm. 

Basis 

Circuit 

TPm TPo TPp 

⟨log(𝐺/𝐺3𝑟𝑝
𝑇𝑃𝑚)⟩ 

Standard 

deviation 
⟨log(𝐺/𝐺3𝑟𝑝

𝑇𝑃𝑚)⟩ 
Standard 

deviation 
⟨log(𝐺/𝐺3𝑟𝑝

𝑇𝑃𝑚)⟩ 
Standard 

deviation 

2r 2.58 0.06 3.25 0.01 3.44 0.01 

3rm  2.37 0.43 2.72 0.00 3.23 0.11 

3rp 0.00 0.07 0.76 0.05 0.00 0.07 

4r -1.09 0.17 -0.54 0.05 -0.49 0.31 

5r -2.12 0.29 -1.91 0.28 -1.08 0.57 

 



 

here, Σ𝑃 is the self-energy associated with the probe electrodes and the other terms are 

described in the main manuscript (Eqn. 6). The current re-injected from 𝑝th Büttiker probe can 

travel to any of the reservoirs—𝐿, 𝑃 = 1,2,3⋯𝑝 − 1, 𝑝 + 1,⋯42, and 𝑅—through 

independent coherent channels.  The total net current that reaches the 𝑅 electrode can be given 

by: 

 

𝐼𝑅 =
2𝑞

ℎ
∫𝑑𝐸 [𝒯𝐿𝑅(𝐸)[𝑓𝐿(𝐸) − 𝑓𝑅(𝐸)] +∑𝒯𝑃𝑅(𝐸)[𝑓𝑃(𝐸) − 𝑓𝑅(𝐸)]

42

𝑃=1

]  

 

(S9) 

where the transmission function 𝒯𝑃𝑄(𝐸) is given by: 

 𝒯𝑃𝑄(𝐸) = 𝑇𝑟[Γ𝑃𝒢Γ𝑄𝒢
†] (S10) 

wherein Γ𝑃 = 𝑖(Σ𝑃 − Σ𝑃
†), the broadening matrix for 𝑃th probe electrode has elements:  

 (Γ𝑃)𝑖𝑖 = 𝛾𝑃    (For 𝑝𝑧 orbital of C/N atom corresponding to 𝑃th probe electrode) 

           = 0     (For all other orbitals)  

(Γ𝑃)𝑖𝑗 = 0     (For 𝑖 ≠ 𝑗) 

(S11) 

here, 𝛾𝑃 is the coupling strength between the 𝑝𝑧 orbital of C/N atom and the 𝑃th probe electrode. 

The broadening matrix elements for 𝐿 and 𝑅 electrodes are given by Eqn. 7 in the main 

manuscript. We scan the value of 𝛾𝑃 from 10−10 to 10−1 for each basis circuits in TPx 

breadboards to analyze the conductance as a function of probe coupling. The Fermi functions 

for 𝐿 and 𝑅 electrodes are defined in main manuscript (Eqn. 4) and given by their corresponding 

chemical potentials. The Fermi functions 𝑓𝑃1–𝑓𝑃42 are unknown and determined from the 

constraint that at energy 𝐸 each Büttiker probe electrode absorbs zero net current: 

 𝐼𝑃(𝐸) = 0 = 𝒯𝐿𝑃(𝐸)[𝑓𝐿(𝐸) − 𝑓𝑃(𝐸)] + 𝒯𝑅𝑃(𝐸)[𝑓𝑅(𝐸) − 𝑓𝑃(𝐸)]

+ ∑ 𝒯𝑃′𝑃(𝐸)[𝑓𝑃′(𝐸) − 𝑓𝑃(𝐸)]

42

𝑃′=1,𝑃′≠𝑃

 

 

(S12) 

By solving these 42-coupled linear equations for a varying range of 𝛾𝑃, we obtain that the Fermi 

function for each of 42 probes at the energy 𝐸 lies between the 𝑓𝐿(𝐸) and 𝑓𝑅(𝐸) values. Tails 

of the broadened energy levels overlap with the energy window for electron transfer (between 

𝑓𝐿(𝐸) and 𝑓𝑅(𝐸)) and lead to hopping of the electron from 𝐿 electrode to the molecular orbitals. 



With all of these Fermi functions, the total current is calculated using Eqn. S9. In Figs. S16A–

C, we compare the incoherent conductance contributions of the five basis circuits (conductance 

with Büttiker probe attached) in each TPx breadboard with the coherent conductance (with no 

Büttiker probe attached) as a function of 𝛾𝑃. Consistent with earlier observations,5,6 it is evident 

from Fig. 17A–C that a shorter circuit—2r is shortest—shows tunneling to hopping crossover 

at larger value of 𝛾𝑃 as compared to that of longer circuit—5r is longest. In Fig. S17D–F, we 

plot the total conductance (coherent + incoherent) for five basis circuits in TPx breadboards as 

a function of 𝛾𝑃. For small values of 𝛾𝑃 (< 10−5𝑒𝑉), the conductance trends do not change 

significantly. On the other hand, for large 𝛾𝑃 values (0.01 or 0.1 𝑒𝑉), the QIE-induced basis 

circuit conductance trends are washed out and conductance of all the basis circuits spans only 

≤ 1 order of magnitude. In this case, conductance is dominated by hopping transport such that 

once an electron occupies a molecular orbital, it spends enough time to be extracted from any 

of the N atoms of the breadboard scaffold which leads to comparable currents for all of the 

basis circuits.  Therefore, incoherent effects can modulate the basis circuit conductance to a 

 

Fig. S17: (A–C) Logarithm of the ratio of the total conductance (coherent + incoherent) to the coherent 

conductance of the five basis circuits. The horizontal black line indicates a ratio wherein the coherent and 

incoherent conductance are equal (𝐺𝑡𝑜𝑡 = 2 × 𝐺). Any point on the black horizontal line represents equal 

contributions from coherent and incoherent conductance to the overall conductance of basis circuit. (D–F) 

Basis circuit conductance (coherent + incoherent) as function of probe coupling 𝛾𝑃 for TPm, TPp, and TPo 

respectively. The conductance for 𝛾𝑃 = 0 and 10−6𝑒𝑉 conincide. 



large extent for sufficiently large values of the dephasing parameter (𝛾𝑃) so that conductance 

for all the basis circuit span only one order of magnitude (rather than > 5 orders of magnitude). 

This analysis shows that signatures of incoherent charge transport processes in the relative 

conductance trends only manifest for 𝛾𝑃 values > 10−5𝑒𝑉 with the conductance of longer basis 

circuits (4r and 5r) impacted first. However, fits to experimental data for TPm from our 

previous study7 and presented here in Fig. S18 reveal that the 𝛾𝑃 values cannot exceed 10−6𝑒𝑉 

with fits progressively getting worse with increasing  𝛾𝑃. Thus, based on the barriers and 

distances (see Methods subsection 5.3) for charge transport in the TPx systems and fits to 

experimental data for TPm (see Fig. S18), we predict that incoherent transport contributions 

are not significant.  
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−6𝑒𝑉 corresponds to the conductance with zero dephasing as shown in Fig. 
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