Supporting Information

Regioisomeric Effects of Dibenzofuran on the Properties of Boron-

Nitrogen Multiple Resonance Emissive Materials

Hongyang Li, ^a Hao Yan^{*a}, Lingqiang Meng, ^a Xiaopeng Zhang, ^a Changchun Kuang, ^a Zhiming Meng, ^a Yaowu He, ^a Hong Xu, ^a Xinkang Zhang, ^a Youxuan Zheng, ^b Chaoyi Yan, ^{*a} and Hong Meng^{*a}

^a School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China

^b Shenzhen Research Institute of Nanjing University, Shenzhen 518057, P. R. China,

E-mail: yanhao@pku.edu.cn

menghong@pku.edu.cn yancy@pku.edu.cn

1. Supplementary figures and tables

Figure S1. ¹H NMR spectra of DABNA-Cl in CDCl₃.

Figure S2 ¹³C NMR spectra of DABNA-Cl in CDCl₃.

Figure S3 ¹H NMR spectra of DABNA-4-DBF in CDCl₃.

Figure S4¹³C NMR spectra of DABNA-4-DBF in CDCl₃.

Figure S5 ¹H NMR spectra of DABNA-3-DBF in CDCl₃.

Figure S6¹³C NMR spectra of DABNA-3-DBF in CDCl₃.

Figure S7¹H NMR spectra of DABNA-2-DBF in CDCl₃.

Figure S8¹³C NMR spectra of DABNA-2-DBF in CDCl₃.

Figure S9 a) The normalized UV-vis absorption (measures at 300 K) in diluted toluene solution. b) The normalized PL (measures at 300 K) in toluene. c) The normalized Phosphorescence (measures at 77K) 3% doped in m-CBP for DABNA-2-DBF

Figure S10 a) The normalized UV-vis absorption (measures at 300 K) in diluted toluene solution. b) The normalized PL (measures at 300 K) in toluene. c) The normalized Phosphorescence (measures at 77K) 3% doped in m-CBP for DABNA-3-DBF

Figure S11 a) The normalized UV-vis absorption (measures at 300 K) in diluted toluene solution. b) The normalized PL (measures at 300 K) in toluene. c) The normalized Phosphorescence (measures at 77K) 3% doped in m-CBP for DABNA-4-DBF

Figure S12 The normalized PL of DABNA-2-DBF (measures at 300 K) in a) hexane. b) toluene. c) *dichloromethane (DCM) and d*) dimethyl formamide (DMF)

Figure S13 The normalized PL of DABNA-3-DBF (measures at 300 K) in a) hexane. b) toluene. c) *dichloromethane (DCM) and d)* dimethyl formamide (DMF)

Figure S14 The normalized PL of DABNA-4-DBF (measures at 300 K) in a) hexane. b) toluene. c) *dichloromethane (DCM) and d)* dimethyl formamide (DMF)

Figure S15 The photoluminescence quantum yields (PLQY) for DABNA-2-DBF

Figure S16 The photoluminescence quantum yields (PLQY) for DABNA-3-DBF

Figure S17 The photoluminescence quantum yields (PLQY) for DABNA-4-DBF

Figure S18 Temperature dependent transient delay curves of (a) DABNA-2-DBF (b) DABNA-3-DBF and (c) DABNA-4-DBF.