The effect of halogen on the structural, optoelectronic, and luminescent properties of hybrid (1,5-Pentanediamine)PbX₄ (X=Cl, Br, I) perovskites

D.S. Shtarev^{1,2a,*}, M.I. Balanov^{2,b}, A.Ju. Major^{2,3,c}, A.V. Gerasimenko^{4,d}, R. Kevorkyants^{5,e}, D.A. Zharovov^{5,f}, K.M. Bulanin^{6,g}, D.V. Pankin^{6,7,h}, A.V. Rudakova^{6,i}, D.A. Chaplygina^{2,j}, N.I. Selivanov^{5,k}, A.V. Emeline^{5,1}

- ¹ Department of Materials Science, Shenzhen MSU-BIT University, PRC.
- ² Institute of High Technologies and Advanced Materials of the Far Eastern Federal University, Vladivostok, Russky Island, Ajax, 10, 690022, Russian Federation.
- ³ Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences, Russian Federation.
- ⁴ Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, Russian Federation.
- ⁵ Saint-Petersburg State University, Laboratory 'Photoactive Nanocomposite Materials', Russian Federation.
- ⁶ Saint-Petersburg State University, Laboratory 'Photonics of Crystals', Russian Federation.
- ⁷ Saint-Petersburg State University, Center for Optical and Laser Materials Research, Russian Federation.
- ^a shtarev@mail.ru, ^b balanov.mi@dvfu.ru, ^c mayor@iacp.dvo.ru, ^d gerasimenko@ich.dvo.ru,
- ^e ruslan.kevorkyants@gmail.com, ^f dmzharovov@gmail.com, ^g k.bulanin@spbu.ru,
- ^h dmitrii.pankin@spbu.ru, ⁱ aida.rudakova@spbu.ru, ^j chaplygina.dal@dvfu.ru,
- ^k selivanov_chem@mail.ru, ¹ alexei.emeline@spbu.ru
- * Corresponding author (ORCID: 0000-0002-1274-0183)

Supplementary materials

Figure S1. Powder XRD spectra of DAPPbX₄, (X = Cl, Br, I) and the reference XRD spectrum of DAPPbI₄.

	DAPPbCl ₄	DAPPbBr ₄
Formula	NH ₃ (CH ₂) ₅ NH ₃ PbCl ₄	NH ₃ (CH ₂) ₅ NH ₃ PbBr ₄
Formula weight	453.19	631.03
Temperature, K	100(2)	150(2)
Radiation type	Μο Κα	Μο Κα
Space group	C2221	C2/c
Shape / size, mm	Prism / 0.037 🗆 0.13 🗆 0.16	Prism / 0.15 0.20 0.24
a , Å	7.4322(6)	21.4488(11)
b , Å	8.0456(6)	8.1241(4)
c, Å	22.5432(18)	8.2662(4)
β, °		100.820(3)
V, Å / Formulae unit	1348.00(18) / 4	1414.80(12) / 4
D_{calc} (g/cm ³) / μ (mm ⁻¹)	2.233 / 13.270	2.963 / 23.185
$\Box \theta$ range (°)	3.62 - 28.50	1.933 - 26.086
Range of h , k and l	-6/9, -10/10, -30/30	-26/26, -10/10, -10/10
F(000)	840	1128
Refl. [meas./uniq./ $I > 2\sigma(I)$]	6297/1718/1700 (Rint = 0.0211)	$23026/1409/1243 \ (R_{int} = 0.0478)$
Number of parameters	108	108
GooF	1.068	1.142
$R_1, wR_2 [F^2 > 2\sigma(F^2)]$	0.0176, 0.0437	0.0231, 0.0540
R_1 , wR_2 (all data)	0.0179, 0.0439	0.0294, 0.0560
$\Delta \rho_{min}, \Delta \rho_{max} (e/Å^3)$	-0.469, 4.515	a–1.047, 1.894
Deposit number CCDC	2269541	2269539

Table S1. Selected crystal and refinement data for $DAPPbX_4$, (X = Cl, Br).

Figure S2. FTIR spectra of $a - PDAPbI_4$, $b - PDAPbBr_4$, $c - PDAPbCl_4$. The calculated IR

spectrum of PDAPbI₄ is represented by the blue bars.

Table S2.Frequencies and assignment of the selected characteristic Raman and IR peaks in the
range [95-1600] cm⁻¹.

PDAPbCl ₄ PDAPbBr ₄		oBr ₄					
Raman	FTIR	Raman	FTIR	Raman	FTIR	FTIR (calculated)	Assignment
1596	1602	1592	1587	1573	1574	1584	δ _{asym} (H-N-H)
1587	1585	1569	1575	1564	1565	1576	δ _{asym} (H-N-H)
1482	1487	1487	1483	1466	1464	1471	δ _s (H-N-H)
1467	1468	1475	1467	1444	1448	1461 1465	predominantly δ _s (H-N-H) v(C-N)
1447	1450	1443	1444	1441	1431	1425,	δ(H-C-H)

PDAPbCl ₄		PDAPbBr ₄		PDAPbI ₄			
Raman	FTIR	Raman	FTIR	Raman	FTIR	FTIR (calculated)	Assignment
						1440	
1320	n/o	1325	1324	1324	1326	1322	predominantly τ(CH ₂)
		1071 1078	1078 1076	1097	1097	1087	v(C-C)
							v(C-N)
1071	1071						ρ(HNH)
							ω(CH ₂)
							τ(CH ₂)
							complex
							atomic
1037 1036	1036 1024	1024	1015	1015	1011	displacements	
						v(C-C)	
						ρ(HNH)	
						τ(CH ₂)	
							v(C-N)
1012 1012							complex
							atomic
	2 974	974	986	986	984	displacements	
						v(C-C)	
						v(C-N),	
						ω(HNH),	
						ω(HCH),	
						ρ(HNH)	
940 982		982 935	933	959	957	957 952	complex
	987						atomic
	762						displacements
							ν(C-C)

PDAPbCl ₄		PDAPbBr ₄		PDAPbI ₄			
Raman	FTIR	Raman	FTIR	Raman	FTIR	FTIR (calculated)	Assignment
							ν(C-N),
							τ(CH ₂)
							ρ(HNH)
							τ(HNH)
							complex
							atomic
							displacements
833	832	893	n/o	857	857	847	ν(C-C)
							ν(C-N)
							ρ(CH ₂)
							ρ(HNH)
509							predominantly
540		510		531			δ(CCC)
540							ρ(HNH)
417	17	428	421			predominantly	
11/		720		721			δ(NCC)
							tors(HNCC)
327		330		320			δ(NCC)
							tors(HCCC)
297		289		286			tors(HNCC)
98							
132		91		00			lattice modes
156		112		20			fattice modes
178							

* The v, δ , ρ , w, and τ notations denote stretching, bending (scissoring), rocking, wagging, and twisting vibrations, respectively.

Figure S4. Normalized FTIR spectra in the range of (tor(C-C-N)+_{as}(NH)) combination band: 1 –
PDAPbI₄, 2 – PDAPbBr₄, 3 – PDAPbCl₄. Spectra of solid PDA (4) and PDA dihydrochloride (5) diluted in KBr pellets are presented for comparison [32].

Figure S5. Normalized FTIR spectra in (NH) frequency range: 1 – PDAPbI₄, 2 – PDAPbBr₄, 3 –
 PDAPbCl₄. Spectra of solid PDA (4) and PDA dihydrochloride (5) diluted in KBr pellets are presented for comparison [32].

Luminescence lifetimes of the synthesized perovskites were determined using the setup in Figure S6. Working characteristics of the laser excitation source YAG laser Q-Smart 850 (Quantel, France): pulse repetition frequency was set to 10 Hz (minimal possible value); pulse energy at 355 nm $- \leq 230$ mJ, pulse energy at 266 nm $- \leq 100$ mJ; pulse duration 5 ns. The vacuumized sample was placed in the optical nitrogen cryostat LN-121-SPECTR (Cryotrade engineering, Russia). To record the time dependence of the luminescence intensity, a spectrometer was used as part of the spectrograph SP2500 (Princeton Instruments, USA) and CCD-camera with stroboscopic brightness enhancement and time delay generator (minimal exposition 0.1 ns) PicoStar HR (LaVision GmbH, Germany).

Figure S6. Experimental setup for luminescence spectra recording: 1 — Laser; 2 – Mirror; 3 –
Filter UFS-1; 4 – Laser beam; 5 – Thermoregulator; 6 — Vacuum pump; 7 –
Cryostat; 8 – Liquid nitrogen; 9 – Sample; 10 – Receiving collimator; 11 – Laser
radiation suppression filter; 12 – Optical fiber; 13 – Spectrometer; 14 – Computer.

The studied luminescence was collected using a quartz collimator UV-74 (Ocean Optics, CIIIA) and then transmitted via optical fiber into the receiver. Both, the laser excitation and luminescence feedback have used the same cryostat window, therefore, to prevent the reflected laser beam entering the collimator aperture the laser beam and collimator optical axis were shifted and tilted away from the window central normal by 10° – the laser beam - vertically, the collimator axis -

horizontally. To suppress the scattered laser radiation a filter was setup in front of the collimator: in the case of 266 nm light – a glass filter EC-4 (analogous to Schott N-WG295, Germany), in the case of 355 nm – a dichroic filter LP02-355RU-25 (Semrock, USA). The remnant second harmonics laser radiation (532 nm) was suppressed by means of the filter $\text{V}\Phi\text{C-1}$ (analogous to Schott UG-1, Germany).

Figure S7. Profile of increasing and decreasing laser pulse intensity for luminescence excitation.