Electronic Supplementary Information

Ni-Co Prussian blue analogue/graphene aerogel: A green synthesis approach for high-performance electromagnetic wave absorption and radar stealth applications

Weijie Liang^a, Ying Wang^a, *, Feng Gao^a, *, Shikun Hou^a, Qiong Wu^a, Hua Yang^a, Fei Jin^a, Gongxun Bai^a, Yahui Wang^b, Zhenbao Li^c and Hongliang Ge^a,*

^a Magnetism Key Laboratory of Zhejiang Province & College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China

^b Anhui Provincial Laboratory of Advanced Laser Technology, College of Electronic Engineering, National University of Defense Technology, Hefei 230037, China

^c Superconducting Materials Research Center, Northwest Institute for Nonferrous Metal Research, Xi'an, 710016, China

*Corresponding Authors. E-mail address: yingwang@cjlu.edu.cn (Y. Wang); gaofeng@cjlu.edu.cn

Fig. S1. SEM images of Ni-Co PBA (a) and GO (b).

Fig. S2. 3D RL values plot of Ni-Co PBA.

Samples	Minimum RL (Frequency, thickness)	EAB < -10 dB (GHz, range, thickness)	Ref.
Co-doped Ni-Zn ferrite/Graphene	-58.3 dB (5.2 GHz, 4.6 mm)	4.8 GHz (7.2-12.0 GHz), 3.0 mm	[1]
Fe_3O_4 -C/Reduced graphene oxide	-60.5 dB (4.8 GHz, 3.6 mm)	5.5 GHz (11.2-16.7 GHz), 1.5 mm	[2]
Co/N-doped graphene/Carbon nanotubes	-65.5 dB (17.5 GHz, 1.5 mm)	4.3 GHz (10.5-14.8 GHz), 2.0 mm	[3]
Fe ₃ O ₄ /Graphene	-37.5 dB (2.8 GHz, 6.5 mm)	3.8 GHz (12.6-16.4 GHz), 1.6 mm	[4]
Fe ₃ O ₄ -Reduced graphene oxide	-49.5 dB (6.3 GHz, 3.4 mm)	2.9 GHz (14.6-17.5 GHz), 1.3 mm	[5]
Ni/Carbon nanotube/Graphene	-45.5 dB (6.2 GHz, 5.0 mm)	5.6 GHz (11.9-17.5 GHz), 2.5 mm	[6]
Polyaniline/Graphene aerogel	-42.3 dB (11.2 GHz, 3.0 mm)	3.2 GHz (8.7-11.9 GHz), 3.0 mm	[7]
ZnO/Reduced graphene oxide foam	-27.8 dB (9.6 GHz, 4.8mm)	4.2 GHz (8.2-12.4 GHz), 4.8 mm	[8]
NiAl-layered double hydroxide/graphene	-41.5 dB (17.8 GHz, 1.4 mm)	4.4 GHz (13.4-17.8 GHz), 1.6 mm	[9]
Ni-Co PBA/GA	-62.3 dB (13.3 GHz, 2.3 mm)	5.6 GHz (12.4-18.0 GHz), 2.1 mm	This work

Table S1 EMW absorption performance of some graphene-based composites in previous reports and this work.

References:

- Liu, P.; Yao, Z.; Zhou, J.; Yang, Z.; Kong, L. B. Small Magnetic Co-Doped NiZn Ferrite/Graphene Nanocomposites and Their Dual-Region Microwave Absorption Performance, J. Mater. Chem. C., 2016, 4, 9738-9749.
- Shu, R.; Wu, Y.; Li, W.; Zhang, J.; Liu, Y.; Shi, J.; Zheng, M. Fabrication of Ferroferric Oxide–Carbon/Reduced Graphene Oxide Nanocomposites Derived from Fe-Based Metal–Organic Frameworks for Microwave Absorption, *Compos Sci Technol.*, 2020, **196**, 108240.
- Wang, K.; Zhang, S.; Chu, W.; Li, H.; Chen, Y.; Chen, B.; Chen, B.; Liu, H. Tailoring Conductive Network Nanostructures of ZIF-Derived Cobalt-Decorated N-Doped Graphene/Carbon Nanotubes for Microwave Absorption Applications, *J. Colloid Interface Sci.*, 2021, **591**, 463-473.
- 4 Du, Z.; Chen, X.; Zhang, Y.; Que, X.; Liu, P.; Zhang, X.; Ma, H.-L.; Zhai, M. One-Pot Hydrothermal Preparation of Fe₃O₄ Decorated Graphene for Microwave Absorption, *Materials*, 2020, **13**, 3065.
- Qilong, S.; Lei, S.; Yingying, C.; Wei, Y.; Sijun, X.; Tao, J.; Guoqiu, Y. Fe₃O₄ Intercalated Reduced Graphene Oxide Nanocomposites with Enhanced
 Microwave Absorption Properties, *Ceram. Int.*, 2019, **45**, 18298-18305.
- 6 Xu, X.; Wang, G.; Wan, G.; Shi, S.; Hao, C.; Tang, Y.; Wang, G. Magnetic Ni/Graphene Connected with Conductive Carbon Nano-Onions or Nanotubes by

Atomic Layer Deposition for Lightweight and Low-Frequency Microwave Absorption, *Chem. Eng. J.*, 2020, **382**, 122980.

- 7 Wang, Y.; Gao, X.; Fu, Y.; Wu, X.; Wang, Q.; Zhang, W.; Luo, C. Enhanced Microwave Absorption Performances of Polyaniline/Graphene Aerogel by Covalent Bonding, *Compos. B. Eng.*, 2019, **169**, 221-228.
- 8 Song, C.; Yin, X.; Han, M.; Li, X.; Hou, Z.; Zhang, L.; Cheng, L. Three-Dimensional Reduced Graphene Oxide Foam Modified with ZnO Nanowires for Enhanced Microwave Absorption Properties, *Carbon*, 2017, **116**, 50-58.
- 9 Xu, X.; Shi, S.; Tang, Y.; Wang, G.; Zhou, M.; Zhao, G.; Zhou, X.; Lin, S.; Meng, F. Growth of NiAl-Layered Double Hydroxide on Graphene toward Excellent Anticorrosive Microwave Absorption Application, *Adv. Sci.*, 2021, **8**, 2002658.

Fig. S3. The complex permittivity of Ni-Co PBA.

Fig. S4. The plots of ε' versus ε'' for GA (a) and Ni-Co PBA/GA (b), and the corresponding relationships between ε' and ε''/f of GA (c) and Ni-Co PBA/GA (d).

Fig. S5. The ε' and ε'' (a), $\tan \delta_{\varepsilon}$ (b), and 2D *RL* plots of SB-Ni-Co PBA/GA in the

frequency range from 2.0 to 18.0 GHz.

Fig. S6. SEM image of SB-Ni-Co PBA/GA.

Fig. S7. The plot of ε ' versus ε " for SB-Ni-Co PBA/GA.

Fig. S8. The $\mu'(a)$, $\mu''(b)$, $\tan \delta_{\mu}(c)$ of GA and Ni-Co PBA/GA in the frequency range

from 2.0 to 18.0 GHz.

Fig. S9. The magnetic hysteresis loops of GA (a) and Ni-Co PBA (b).

Fig. S10. The complex permeability of Ni-Co PBA.

Fig. S11. The attenuation coefficient (α) of GA and Ni-Co PBA/GA.

Fig. S12. The |Z-1| values of GA (a) and Ni-Co PBA/GA (b).