Tunable Structural Phases and Electronic Properties of Group V MSi_2N_4 (M=V, Nb, Ta) nanosheets via Surface Hydrogenation: A First-Principles Study

Yanli Wang^{1, a)} and Yi Ding^{2, b)} ¹⁾Department of Physics, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China ²⁾School of Physics, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China

(Dated: 26 October 2023)

^{a)}Y. Wang: wangyanli-04@tsinghua.org.cn

^{b)}Y. Ding: dingyi2001@tsinghua.org.cn

- Figure S1: The AIMD simulations of NbSi₂N₄H₁ nanosheets at 300 K.
- Figure S2: The COHP analysis of $NbSi_2N_4H_1$ nanosheets.
- Figures S3 and S4: The atomic structures of $NbSi_2N_4H_x$ systems.
- Figure S5: The strain and electric field effects on the energy differences.
- Figure S6: The charge injection influence on the energy differences.
- Figure S7: The AIMD simulation of pristine $NbSi_2N_4$ systems.
- Figure S8: The band structures of $NbSi_2N_4H_x$ ($x \neq 0, 1, 2$) nanosheets.

Figure S9: The stability of $\rm NbSi_2N_4H_1$ system under the electric fields.

Figure S10: The band structures of $NbSi_2N_4H_x$ (x = 0, 2) under the electric fields.

Figure S1: The AIMD simulation results of (a) H_{α} -NbSi₂N₄H₁ and (b) H_{β} -NbSi₂N₄H₁ nanosheets under a temperature of 300 K.

Figure S2: (a) The -COHP functions of Si-N_i bonds that connect the hydrogenated SiN surface layer and the inner NbN₂ part. The integral of -COHP (-ICOHP) is also depicted in the inset. (b) The lateral view of H_{α} - and H_{β} -NbSi₂N₄H₁ nanosheets, where the Si-N_i bonds are marked. It can be seen that there is one and three Si-N_i bonds per formula unit in the H_{α} - and H_{β} -phase structures, respectively. The corresponding -ICOHP values at the Fermi level per formula unit are also noted.

Figure S3: The geometrical structures of $NbSi_2N_4H_x$ nanosheets with $x = 1/9 \sim 1$. The Nb, Si, N and H atoms are represented by green, blue, grey and red balls, respectively.

Figure S4: The geometrical structures of $NbSi_2N_4H_x$ nanosheets with $x = 10/9 \sim 2$. The Nb, Si, N and H atoms are represented by green, blue, grey and red balls, respectively.

Figure S5: The variations of energy differences between the H_{β}/T_{β} - and H_{α} -NbSi₂N₄ nanosheets under the (a) strain and (b) electric field modulations. It can be seen that the H_{α} -phase geometry is always favored in these NbSi₂N₄ nanosheets.

Figure S6: (a) The variations of energy differences between the H_{β}/T_{β} - and H_{α} -NbSi₂N₄ nanosheets with the different injected electron amount. The band structures of (b) doped H_{α} - and (b) H_{β} -NbSi₂N₄ nanosheets with injected electron amount of 1 e/f.u. The H_{α} -phase geometry is preferred for the doped NbSi₂N₄ nanosheet and it exhibit different band structures from the semihydrogenated NbSi₂N₄H₁ one.

Figure S7: The AIMD simulation results for the pristine H-phase $NbSi_2N_4$ nanosheet under the temperatures of (a) 500 K and (b) 1000 K, respectively.

Figure S8: The band structures of (a) H_{α} -NbSi₂N₄H_{0.33}, (b) H_{α} -NbSi₂N₄H_{0.67}, (c) H_{β} -NbSi₂N₄H_{1.33} and (d) T_{β} -NbSi₂N₄H_{1.67} nanosheets.

Figure S9: The phonon dispersions and AIMD simulation results of H_{β} -NbSi₂N₄H₁ nanosheet under the electric field of E = 0.5 V/Å.

Figure S10: (a)-(b) The band structures of pristine H_{α} -NbSi₂N₄ nanosheet at the ferromagnetic state under the electric field of E= 0.25 and 0.5 V/Å. (c)-(d) The band structures of T_{β} -NbSi₂N₄H₂ nanosheet under the electric field of 0.25 and 0.5 V/Å.