Supporting Information

Solution-Processed Copper (I) Iodide via Co-Doping for Enhanced

Hole Selective Contacts in P-Type Crystalline Silicon Solar Cells

Wang Fu¹, Wuqi Liu¹, Yaju Wei¹, Dan Liu¹, Songyu Li¹, Di Zhao¹, Xiaoping Wu¹,

Lingbo Xu¹, Ping Lin¹, Can Cui^{1*}, Xuegong Yu², Peng Wang^{1*}

¹Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of

Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China

²State Key Laboratory of Silicon and Advanced Semiconductor Materials & School of

Material Science and Engineering, Zhejiang University, Hangzhou 310027, China

Corresponding author: *pengwang@zstu.edu.cn (Peng Wang), cancui@zstu.edu.cn (Can Cui)

Figure S1. (a) Effective carrier lifetime of p-Si wafers without (the control) and with CuI films. (b) Dark J-V curves of the control and CuI/p-Si heterojunction solar cell devices.

Figure S2. SEM image and element distribution of I₂:CuI film.

Figure S3. Effective carrier lifetime of p-Si wafers coated by I₂:CuI films with different thickness.

Figure S4. AFM image of I₂:CuI film with the thickness of 25 nm.

Figure S5. Illuminated J-V curves of $Al^{3+}-I_2$:CuI/p-Si heterojunction solar cell devices with different Al^{3+} doping concentrations.

Figure S6. Al 2p XPS spectra of pristine CuI, I₂:CuI and Al³⁺-I₂:CuI films.

Figure S7. Steady-state PL spectra of CuI films with different I₂ doping concentrations.

Figure S8. The conductivity measurement of pristine CuI, I₂:CuI and Al³⁺-I₂:CuI films. The inset shows the test structure.

Figure S9. Dark J-V curves of the carrier transport layers on n-Si substrates. The inset shows the contact structure.

I ₂ :CuI	V _{OC} (mV)	J _{SC} (mA/cm ²)	FF (%)	PCE (%)
0%	584	39.82	61.92	14.41
4%	576	39.76	68.40	15.68
8%	576	39.86	71.94	16.54
12%	569	39.71	70.63	15.96
16%	562	39.55	67.1	14.93

Table S1. Photovoltaic parameters of I_2 :CuI/p-Si heterojunction solar cells with different I_2 doping concentrations.

Table S2. Photovoltaic parameters of I_2 :CuI/p-Si heterojunction solar cells with different thickness of CuI films.

Thickness	V _{OC} (mV)	J _{SC} (mA/cm ²)	FF (%)	PCE (%)
5 nm	546	39.73	70.17	15.23
7 nm	580	39.44	71.85	16.46
10 nm	594	39.60	73.77	17.37
15 nm	594	39.38	71.28	16.67
20 nm	591	39.52	67.50	15.77
25 nm	592	39.37	66.63	15.53

	Carrier concentration	Mobility	Conductivity (S cm ⁻¹)	
	(cm ⁻³)	$(cm^2V^{-1}s^{-1})$		
CuI	2.52×10^{18}	52.9	21.33	
I ₂ :CuI	4.64×10^{18}	34.1	25.32	
Al ³⁺ -I ₂ :CuI	3.77×10^{19}	28.3	170.70	

Table S3. Parameters of pristine CuI, I₂:CuI and Al³⁺-I₂:CuI films measured by Hall effect.

Table S4. Simulation parameters of the CuI/p-Si heterojunction solar cells at 300 K.

Parameters	p-Si	CuI ¹	I ₂ :CuI	Al ³⁺ -I ₂ :CuI
Thickness(cm)	1.75×10 ⁻²	1×10 ⁻⁶	1×10^{-6}	1×10^{-6}
Shallow uniform acceptor density (cm^{-3})	1×10 ¹⁶	1×10 ¹⁹	1.5×10 ¹⁹	2.0×10 ¹⁹
Dielectric constant	11.9	6.5	6.5	6.5
Electron affinity (eV)	4.05	2.35	2.35	2.35
Bandgap (eV)	1.124	2.9	2.97	2.93
CB effective density of states (cm ^{-3})	2.843×10 ¹⁹	2.2×10 ¹⁸	2.2×10 ¹⁸	2.2×10 ¹⁸
VB effective density of states (cm^{-3})	2.682×10 ¹⁹	1.8×10 ¹⁸	1.8×10 ¹⁸	1.8×10 ¹⁸
Electron mobility (cm ² /Vs)	1107	100	100	100
Hole mobility (cm ² /Vs)	424.6	43.9	43.9	43.9

1 J. Hossain, M. Rahman, M. M. A. Moon, B. K. Mondal, M. F. Rahman and M. H. K. Rubel, *Eng. Res. Express*, 2020, **2**, 045019.