Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Supplementary Material

Fracture Toughness and Critical Thickness of β-(In_xGa_{1-x})₂O₃ /

Ga₂O₃ by First Principles

Jiahe Cao^{1,a}, Zhigao Xie¹, Yan Wang¹, Hanzhao Song¹, Guosong Zeng², Weihua Tang³ and Chee-

Keong Tan^{1,4,5,6,b}

¹Advanced Materials Thrust, Function Hub, Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511466, China

²Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China ³Innovation Center of Gallium Oxide Semiconductor (IC-GAO), College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

⁴Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong, China ⁵Guangzhou Municipal Key Laboratory of Materials Informatics, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511453, China

⁶Guangzhou Municipal Key Laboratory of Integrated Circuits Design, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511453, China

^aEmail : jcao492@connect.hkust-gz.edu.cn , ^bEmail : cheekeongtan@hkust-gz.edu.cn; cheekeongtan@ust.hk

Supplementary Fig. 1. Mechanical properties of Ga_2O_3 and $(In_xGa_{1-x})_2O_3$ with In concentration up to 37.5%. Blue line represents bulk modulus, red line represents Young's modulus and yellow line represents shear modulus.

Supplementary Fig. 2. Hardness of Ga_2O_3 and $(In_xGa_{1-x})_2O_3$ with In concentration up to 37.5%.

Table I: Poisson's Ratio of Ga_2O_3 and $(In_xGa_{1-x})_2O_3$ with In concentration up to 37.5%.

In Content	0.00%	6.25%	12.50%	18.75%	25.00%	31.25%	37.50%
Poisson's Ratio	0.32	0.32	0.32	0.32	0.32	0.33	0.33

The in-plane and out-of-plane strain for [010] orientation:

$$\begin{aligned} \epsilon_{xx} &= \frac{a_s}{a_f} - 1 \\ \epsilon_{zz} &= \frac{c_s \sin\beta_s}{c_f \sin\beta_f} - 1 \\ \epsilon_{xz} &= \frac{(a_f - a_s) \cos\beta_f}{2a_f \sin\beta_f} + \frac{c_s \cos\beta_s - c_f \cos\beta_f}{2c_f \sin\beta_f} = \frac{1}{2} (\frac{c_s \sin\beta_s}{c_f \sin\beta_f} - \frac{a_s}{a_f} \cot\beta_f) \end{aligned}$$

For the surface conditions $\sigma_{yy} = \sigma_2 = 0$ and $\sigma_4 = \sigma_6 = 0$, $\epsilon_{xy} = \epsilon_{yz} = 0$ and

$$\epsilon_{yy} = -\frac{C_{12}\epsilon_{xx} + C_{23}\epsilon_{zz} + 2C_{25}\epsilon_{xz}}{C_{22}}$$

The in-plane and out-of-plane strain for [100] orientation:

$$\epsilon_{xx} = \frac{c_s}{c_f} - 1$$

$$\epsilon_{yy} = \epsilon_{yy} = \frac{b_s}{b_f} - 1$$

Angle θ is the angle of (100) plane against z-direction.

 $\epsilon_{xx} = \epsilon'_{xx} cos^2 \theta + \epsilon'_{zz} sin^2 \theta - 2\epsilon'_{xz} cos \theta sin \theta$ $\epsilon_{zz} = \epsilon'_{xx} sin^2 \theta + \epsilon'_{zz} cos^2 \theta - \epsilon'_{xz} sin 2\theta$ $\epsilon_{xz} = (\epsilon'_{xx} - \epsilon'_{zz}) cos \theta sin \theta + \epsilon'_{xz} cos 2\theta$