Supporting Information for

Synergistically coupling of NiVAl layered double hydroxide with few-layer $Ti_3C_2T_x$ -MXene nanosheets for superior asymmetric supercapacitor

Xinsheng Zhou^{1, a}, Zhuoran Hou^{1, a}, Hua-Yu Zhang^{*} a, Jie Yu^a

^a Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China

* Corresponding author.

Email: hyzhang@hit.edu.cn

¹ These authors contributed equally to this work.

Fig. S1. SEM images of (a) Ti_3AlC_2 , (b) $Ti_3C_2T_x$ -MXene.

Fig. S2. SEM images of (a) NiVAl-LDH at high magnification, (b) NiVAl-LDH at

low magnification, (c) EDS mapping of O, Al, V and Ni.

Fig. S3. SEM images of (a) $Ti_3C_2T_x$ -MXene/NiVAl-LDH(1:1) at high magnification,

(b) $Ti_3C_2T_x$ -MXene/NiVAl-LDH(1:8) at high magnification, (c) $Ti_3C_2T_x$ -

MXene/NiVAl-LDH(1:1) at high magnification, (d) Ti₃C₂T_x-MXene/NiVAl-LDH(1:8)

at low magnification.

Fig. S4. The XRD pattern of Ti_3AlC_2 and $Ti_3C_2T_x$ -MXene.

Fig. S5. (a) The XPS survey spectrum of $Ti_3C_2T_x$ -MXene, (b) Ti 2p, (c) O 1s and (d)

C 1s high-resolution XPS spectra of $Ti_3C_2T_x$ -MXene.

Fig. S6. (a) CV curves of NiVAl-LDH at different scan rates, (b) GCD curves of

NiVAl-LDH at different current densities.

Fig. S7. (a) CV curves of different samples at scan rate of 2 mV s⁻¹. (d) GCD curves of different samples at current density of 1 A g⁻¹. (c) Histogram of the specific capacitance of different samples.

Fig. S8. CV of capacitive-controlled and diffusion-controlled contributions for

Ti₃C₂T_x-MXene/NiVAl-LDH at different scanning rates.

Table. S1. The specific R_s and R_{ct} values (\Omega) of $Ti_3C_2T_x\text{-}MXene,$ NiVAl-LDH and

Samples	R _s	R _{ct}
Ti ₃ C ₂ T _x -MXene	1.01	0.56
NiVAl-LDH	2.01	0.98
Ti ₃ C ₂ T _x -MXene/NiVAl-LDH	1.29	0.49
Ti ₃ C ₂ T _x -MXene NiVAl-LDH Ti ₃ C ₂ T _x -MXene/NiVAl-LDH	1.01 2.01 1.29	0.56 0.98 0.49

Ti₃C₂T_x-MXene/NiVAl-LDH

Table. S2. Electrochemical performances of $Ti_3C_2T_x$ -MXene/NiVAl-LDH and

Electrode	КОН	Specific	Cycle	Ref.
materials	electrolyte	capacitance	retention	
Ti ₃ C ₂ T _x -MXene/NiVAl-LDH	1 mol L ⁻¹	186.7 mAh g ⁻¹ (1 A g ⁻¹)	84.7% (5000 cycles, 10 A g ⁻¹)	This work
NiMn-LDH	6 mol L ⁻¹	527 F g ⁻¹ (1 A g ⁻¹)	91.2% (5000 cycles, 2 A g ⁻¹)	1
C-NiMn-1	1 mol L ⁻¹	870 F g ⁻¹ (1 A g ⁻¹)	89.9% (5000 cycles, 0.5 A g ⁻¹)	2
MXene/NiCoFe-LDH	1 mol L ⁻¹	1305 F g ⁻¹ (1 A g ⁻¹)	85.7% (6000 cycles, 10 A g ⁻¹)	3
CNTs@NiCo-LDH//ZIF-8	1 mol L ⁻¹	$176 \text{ mAh } \text{g}^{-1} (1 \text{ A } \text{g}^{-1})$	90.22% (5200 cycles, 10 A g ⁻¹)	4
NiCoAl-LDH/V ₄ C ₃ T _x	1 mol L ⁻¹	627 C g ⁻¹ (1 A g ⁻¹)	98.0% (10000 cycles, 20 A g ⁻¹)	5
G-NiMnLDH	2 mol L ⁻¹	1108 F g ⁻¹ (1 A g ⁻¹)	78% (3000 cycles, 15 A g ⁻¹)	6
FeNi-LDH/Ti ₃ C ₂ T _x	1 mol L ⁻¹	922.6 F g ⁻¹ (1 A g ⁻¹)	88% (10000 cycles, 3 A g ⁻¹)	7
NiMoO4/NiCo-LDH	1 mol L ⁻¹	153.7 mAh g^{-1} (1 A g^{-1})	80% (5000 cycles, 1 A g ⁻¹)	8
CoNi ₂ S ₄ /CoNi-LDH	1 mol L ⁻¹	184 mAh g ⁻¹ (2 A g ⁻¹)	95.9% (10000 cycles, 1 A g ⁻¹)	9
NiCo-LDH@AgNW	1 mol L ⁻¹	115 mAh g ⁻¹ (0.2 A g ⁻¹)	75.9% (5000 cycles, 1 A g ⁻¹)	10

relevant electrode materials

Fig. S9. (a) CV curves of AC at different scan rates, (b) GCD curves of AC at

different current densities.

References

- M. M. Baig, I. H. Gul, R. Ahmad, S. M. Baig, M. Z. Khan and N. Iqbal, *J. Mater. Sci.*, 2021, 56, 18636-18649.
- Q. Shan, W. Huo, M. Shen, C. Jing, Y. Peng, H. Pu and Y. Zhang, *Chin. Chem. Lett.*, 2020, **31**, 2245-2248.
- T. Yang, J. Ye, S. Chen, S. Liao, H. Chen, L. Yang, X. Xu and F. Wang, *Electrochim. Acta*, 2020, 362, 137081.
- 4. F. Zhu, W. Liu, Y. Liu and W. Shi, *Chem. Eng. J.*, 2020, **383**, 123150.
- X. Wang, H. Li, H. Li, S. Lin, J. Bai, J. Dai, C. Liang, X. Zhu, Y. Sun and S. Dou, J. Mater. Chem. A, 2019, 7, 2291-2300.
- Y. Yang, X. Xu, W. Li, Y. Huang, J. Jiang, L. He, M. Jing, Y. Bai, T. Wu, G.
 Fang, Y. Yang and X. Wang, *Appl. Surf. Sci.*, 2023, 611, 155562.

- R. Zhang, J. Dong, W. Zhang, L. Ma, Z. Jiang, J. Wang and Y. Huang, *Nano Energy*, 2022, **91**, 106633.
- 8. S. Cui, Q. Hu, K. Sun, X. Wang, F. Wang, H. A. Hamouda, H. Peng and G. Ma, ACS Appl. Nano Mater., 2022, **5**, 6181-6191.
- 9. A. Siddiqa, N. D. H and M. Padaki, *Energy Fuels*, 2022, **36**, 13286-13295.
- X. Xuan, M. Qian, L. Pan, T. Lu, Y. Gao, L. Han, L. Wan, Y. Niu and S. Gong, J. Energy Chem., 2022, 70, 593-603.