Supporting Information

Ultrathin and flexible polyimide/Ti₃C₂T_X MXene composite film for

electromagnetic interference shielding with harsh environment tolerance

Binzhe Tan, Dongya Guo, Zhirong Tao, Zhibo Chen, Zhijian Lv, Guozhang Wu * and Yu ${\rm Lin}^{\ast}$

Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East

China University of Science and Technology, Shanghai 200237, China

Fig. S1 Digital images of MXene and PM composite films with different PI contents.

Fig. S2 Digital images show the PM composite film has excellent flexibility.

^{*} Corresponding authors. E-mail: wgz@ecust.edu.cn (G. Wu), linyu@ecust.edu.cn (Y. Lin).

Fig. S3 TGA curves of MXene and PM composite films with different PI contents.

Fig. S4 Tensile stress-strain curves of PM composite films. (a) PM composite films with different PI contents, (b) MXene, (c) PM-1, (d) PM-2, (e) PM-3, and (f) PM-4.

Sample	Tensile strength (MPa)	Young's modulus (GPa)	Strain (%)
MXene	12.9 ± 0.5	2.89 ± 0.04	0.58 ± 0.01
PM-1	40.7 ± 2.5	3.13 ± 0.09	1.90 ± 0.10
PM-2	90.4 ± 2.4	5.27 ± 0.16	2.48 ± 0.16
PM-3	114.9 ± 1.6	6.18 ± 0.48	3.02 ± 0.12
PM-4	78.3 ± 2.0	6.37 ± 0.34	1.52 ± 0.14

Table S1 Mechanical properties of PM composite films with different PI contents.

Туре	Number	Materials	Thickness (mm)	SE (dB)	SE/d (dB/mm)	SSE/t (dB·cm ² ·g ⁻¹)	Ref.
rGO	1	rGO/WPU	1	34	34	338	S1
	2	rGO-Fe ₃ O ₄ /PVC	1.8	13	7.2	49.5	S2
	3	rGO-γ-Fe ₂ O ₃ /PVA	0.36	20.3	56.4	416.7	S3
	4	rGO/Fe ₃ O ₄	0.3	24	80	1033	S4
	5	rGO/PEDOT	0.8	70	87.5	841	S5
CNTs	6	MWCNTs/WPU	0.1	21.1	211	5410	S6
	7	MWCNTs/PC	2.1	39	18.6	164	S7
	8	MWCNTs/ABS	1.1	50	45.5	433	S8
	9	MWCNTs/PS	2	30	15	285	S9
	10	CNTs/PC	1.85	25	13.5	112.6	S10
	11	CNTs/PP	1	35	35	372	S11
MXene-based	12	Ti ₃ C ₂ T _X /PIF	0.256	49.9	194.9	/	S12
	13	Ti ₃ C ₂ T _X /PEDOT:PS S	0.013	21.6	1661.5	9169.5	S13
			0.167	25	149.7	1362	
	14	d-Ti ₃ C ₂ T _X /CNF	0.074	26	351.4	2154	S14
			0.047	24	510.6	2647	
	15	$CNF@Ti_3C_2T_X$	0.035	40	1142.8	7029	S15
	16	Ti ₃ C ₂ T _X /TOCNF	0.047	32.7	695.7	4761	S16
	17	Ti ₃ C ₂ T _X /ANF	0.017	28.5	1676.5	11554.2	S17
	18	Ti ₃ C ₂ T _X /CNTs/CNF	0.038	38.4	1010.5	8020	S18
	19	Ti ₃ C ₂ T _X /PVA	0.027	44.4	1644.4	9343	S19
	20	Ti ₃ C ₂ T _X /SA	0.014	43.9	3135.7	14830	S20
Metal-based	21	AgNW	0.5	35	70	2416	S21
	22	CuNi-CNT	1.5	54.6	36.4	1580	S22
	23	CF@NiCo/PI	1.08	87	80.6	/	S23
This work	24	PM-1	0.012	44	3666.7	16755	
	25	PM-2	0.013	41	3153.8	12566	
	26	PM-3	0.015	37	2467.7	10332	
	27	PM-4	0.017	28	1647.1	7037	

Table S2 Comparison of the EMI shielding performance of PM composite films and other materials.

Supplementary References

- [S1] Hsiao S. T., Ma C. C., Liao W. H., et al. Lightweight and flexible reduced graphene oxide/water-borne polyurethane composites with high electrical conductivity and excellent electromagnetic interference shielding performance [J]. ACS Applied Materials & Interfaces. 2014, 6 (13): 10667-10678.
- [S2] Yao K., Gong J., Tian N. N., et al. Flammability properties and electromagnetic interference shielding of PVC/graphene composites containing Fe₃O₄ nanoparticles [J]. RSC Advances. 2015, 5 (40): 31910-31919.
- [S3] Yuan B. H., Bao C. L., Qian X. D., et al. Design of artificial nacre-like hybrid films as shielding to mitigate electromagnetic pollution [J]. Carbon. 2014, 75: 178-189.
- [S4] Song W. L., Guan X. T., Fan L. Z., et al. Magnetic and conductive graphene papers toward thin layers of effective electromagnetic shielding [J]. Journal of Materials Chemistry A. 2015, 3 (5): 2097-2107.
- [S5] Agnihotri N., Chakrabarti K., De A. Highly efficient electromagnetic interference shielding using graphite nanoplatelet/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) composites with enhanced thermal conductivity [J]. RSC Advances. 2015, 5 (54): 43765-43771.
- [S6] Zeng Z. H., Jin H., Chen M. J., et al. Lightweight and Anisotropic Porous MWCNT/WPU Composites for Ultrahigh Performance Electromagnetic Interference Shielding [J]. Advanced Functional Materials. 2016, 26 (2): 303-310.
- [S7] Pande S., Chaudhary A., Patel D., et al. Mechanical and electrical properties of multiwall carbon nanotube/polycarbonate composites for electrostatic discharge and electromagnetic interference shielding applications [J]. RSC Advances. 2014, 4 (27): 13839-13849.
- [S8] Al-saleh M. H., Saadeh W. H., Sundararaj U. EMI shielding effectiveness of carbon based nanostructured polymeric materials: A comparative study [J]. Carbon. 2013, 60: 146-156.
- [S9] Arjmand M., Apperley T., Okoniewski M., et al. Comparative study of electromagnetic interference shielding properties of injection molded versus compression molded multiwalled carbon nanotube/polystyrene composites [J]. Carbon. 2012, 50 (14): 5126-5134.
- [S10] Arjmand M., Mahmoodi M., Gelves G. A., et al. Electrical and electromagnetic interference shielding properties of flow-induced oriented carbon nanotubes in polycarbonate [J]. Carbon. 2011, 49 (11): 3430-3440.
- [S11] Al-saleh M. H., Sundararaj U. Electromagnetic interference shielding mechanisms of CNT/polymer composites [J]. Carbon. 2009, 47 (7): 1738-1746.
- [S12] Sun K., Wang F., Yang W. K., et al. Flexible Conductive Polyimide Fiber/MXene Composite Film for Electromagnetic Interference Shielding and Joule Heating with Excellent Harsh Environment Tolerance [J]. ACS Applied Materials & Interfaces. 2021, 13 (42): 50368-50380.
- [S13] Liu R. T., Miao M., Li Y. H., et al. Ultrathin Biomimetic Polymeric Ti₃C₂T_X MXene Composite Films for Electromagnetic Interference Shielding [J]. ACS Applied Materials & Interfaces. 2018, 10 (51): 44787-44795.
- [S14] Cao W. T., Chen F. F., Zhu Y. J., et al. Binary Strengthening and Toughening of MXene/Cellulose Nanofiber Composite Paper with Nacre-Inspired Structure and Superior Electromagnetic Interference Shielding Properties [J]. ACS Nano. 2018, 12 (5): 4583-4593.

- [S15] Zhou B., Zhang Z., Li Y. L., et al. Flexible, Robust, and Multifunctional Electromagnetic Interference Shielding Film with Alternating Cellulose Nanofiber and MXene Layers [J]. ACS Applied Materials & Interfaces. 2020, 12 (4): 4895-4905.
- [S16] Zhan Z. Y., Song Q. C., Zhou Z. H., et al. Ultrastrong and conductive MXene/cellulose nanofiber films enhanced by hierarchical nano-architecture and interfacial interaction for flexible electromagnetic interference shielding [J]. Journal of Materials Chemistry C. 2019, 7 (32): 9820-9829.
- [S17] Xie F., Jia F. F., Zhuo L. H., et al. Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding [J]. Nanoscale. 2019, 11 (48): 23382-23391.
- [S18] Cao W. T., Ma C., Tan S., et al. Ultrathin and Flexible CNTs/MXene/Cellulose Nanofibrils Composite Paper for Electromagnetic Interference Shielding [J]. Nano-Micro Letters. 2019, 11 (1): 1-17.
- [S19] Jin X. X., Wang J. F., Dai L. Z., et al. Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances [J]. Chemical Engineering Journal. 2020, 380: 122475.
- [S20] Zhou Z. H., Liu J. Z., Zhang X. X., et al. Ultrathin MXene/Calcium Alginate Aerogel Film for High-Performance Electromagnetic Interference Shielding [J]. Advanced Materials Interfaces. 2019, 6 (6): 1802040.
- [S21] Ma J. J., Wang K., Zhan M. S. A comparative study of structure and electromagnetic interference shielding performance for silver nanostructure hybrid polyimide foams [J]. RSC Advances. 2015, 5 (80): 65283-65296.
- [S22] Ji K. J., Zhao H. H., Zhang J., et al. Fabrication and electromagnetic interference shielding performance of open-cell foam of a Cu-Ni alloy integrated with CNTs [J]. Applied Surface Science. 2014, 311: 351-356.
- [S23] Li J. W., Zhang X. N., Ding Y. Q., et al. Multifunctional carbon fiber@NiCo/polyimide films with outstanding electromagnetic interference shielding performance [J]. Chemical Engineering Journal. 2022, 427: 131937.