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In this work, all the self-consistent Density Functional Theory (DFT) and Density Functional 

Perturbation Theory (DFPT) calculations are implemented in Quantum Espresso (QE)[1]. The 

convergence of total energy with respect to K-points density, energy cut-off, and smearing energy 

have been carefully checked. The input atomic structure is optimized to ensure the stability of 

lattice structure. In all the structure optimization DFT calculations, K-points of 21 × 21 × 21 and 

13 × 13 × 13 gamma grid are set for pure metals and intermetallic compounds, respectively. A 

plane-wave energy cutoff of 70 Ry for the truncation of the plane wave basis is set for all the 

calculations. In these calculations, the Ultra Soft Pseudo Potentials (USPP) and Generalized 

Gradient Approximation (GGA) functional are used in our calculations. The lattice structure and 

the optimized lattice constant are listed in Table S1, in which the DFT calculated lattice constants 

are compared with the experimental values[2, 3].

Table S1. Lattice structure and lattice constant of metals in our work and experimental lattice constants 

are also presented for comparisons. 2nd IFCs and 3rd IFCs are obtained through CSLD. NN represents the 

nearest neighbors.

Materials Lattice constant Input in CSLD[4]

DFT (Å) Exp. (Å) Supercell NN Cutoff (Å) K-points

Pd 3.917 3.950[2] 5×5×5 5 6.527 4×4×4

Ag 4.129 4.078[5] 4×4×4 5 6.897 4×4×4

PbAuGa 6.702 3×3×3 3 5.156 2×2×2

CsKNa 9.985 3×3×3 3 7.673 2×2×2

In p-p scattering rate calculations, to obtain Interatomic Force Constants (2nd IFCs and 3rd 

IFCs) efficiently, CSLD method is used. The inputs in CSLD have been listed in Table S1. 

Considering the computational cost and precious, the nearest neighbors (NN) have been set to 5 

for pure metal and 3 for intermetallic compounds. Furthermore, in order to quantify the strength 

of interatomic interactions which are described by harmonic IFCs, we calculated the normalized 
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trace of interatomic force constant tensors[6]. According to this parameter, one can directly 

determine how large the cutoff radius should be used to evaluate the anharmonic IFCs by 

effectively including the possibly strong interaction strength as revealed by the large trace value. 

Figure S1(a) is the normalized trace of IFC in Pd, it is clear that when the cutoff radius is less than 

6.527 Å (red ball), which are corresponding to the 5th-nearest neighbors of Pd, there exist strong 

interactions. When the cutoff radius is bigger than the threshold value (5th-nearest neighbor), the 

trace values turn out to be very weak, indicating negligible force constants. Similarly, the cutoff 

has been set as 6.897 Å, 5.1516Å, and 7.673Å for Ag, PbAuGa, and CsKNa respectively.

Figure S1. Normalized trace of interatomic force constant tensors vs atomic distances.

In p-e scattering rate calculations, the phonon perturbation is firstly calculated using DFPT 

as implemented in QE and then the p-e scattering matrix element is calculated in Electron-Phonon 

Wannier (EPW) package[7]. The p-e scattering matrix element is initially obtained on coarse 

electron and phonon wave vector grids and then interpolated to denser electron and phonon wave 

vector grids using the maximally localized Wannier function basis as implemented in EPW. The 
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Q- and K-points of Coarse meshes and Finer meshes are listed in Table S2. Finally, the p-e 

scattering rate contributed to phonon and electron transport can be obtained. To make sure the 

accuracy of EPW, we can now compare the interpolated band structures (EPW) with those from 

the ph.x module in QE [see Figure S2]. It indicates the reliability of the calculated.

Table S2. Number of Maximally Localized Wannier Functions (MLWFs) for the p-e matrix interpolation. 

Coarse and finer mesh of phonon and electron wave vector for calculating the p-e scattering rate in EPW.

Coarse meshes Finer meshesMaterials

Q-points K-points Q-points K-points

Pd 3×3×3 6×6×6 15×15×15 30×30×30

Ag 3×3×3 9×9×9 18×18×18 30×30×30

PbAuGa 4×4×4 12×12×12 15×15×15 30×30×30

CsKNa 2×2×2 12×12×12 20×20×20 30×30×30

Figure S2. The comparison of the interpolated band structures (EPW) with those from the ph.x module in 
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QE.

In thermal conductivity calculations, the ShengBTE package[8] was modified to incorporate 

the p-e scattering and p-p scattering. The thermal conductivity convergence of PbAuGa and 

CsKNa with respect to the Q-grids is fully examined in Figure S3. It is shown in Figure S3 that 

the thermal conductivity of PbAuGa possesses a well-converged behavior when the Q-grids are 

greater than 15 × 15 × 15, and for CsKNa, the Q-grids will be set as 20 × 20 × 20.

Figure S3. The thermal conductivity convergence of PbAuGa and CsKNa with respect to the Q-grids.
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Figure S4. Crystal structure of PbAuGa and CsKNa. (a) and (c) are the perspective views of unit 

cells for PbAuGa and CsKNa, respectively. (b) and (d) are the side views of corresponding primitive cells.

Elastic constants are physical properties of crystals to relate the mechanical response to the 

material deformation. The elasticity tensor is a fourth-rank tensor describing the stress-strain 

relation in a linear elastic material, but the elasticity tensor only has at most 21 independent 

components due to symmetry. For cubic crystals the elastic constant, Cij, may be reduced to just 

three independent elastic constants: C11, C12, and C44. The elastic constants of Pd, Ag, PbAuGa, 

and CsKNa are listed in Table S3. Coudert[9] states the generic requirements for the elastic stability 

of crystal lattices and gives simplified equivalents of the generic conditions for some high-

symmetry crystal classes. In particular, in the case of cubic crystals, the conditions of stability 

reduce to a very simple form:

                                            (1)11 12 11 12 440, 2 0, 0C C C C C    

Therefore, from the table, it is clear that the elastic constants of PbAuGa and CsKNa satisfy 

the stability criteria, and the compounds are mechanically stable.
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Table S3. Calculated elastic constants (Cij) (in GPa), Young’s modulus (in GPa) (E), Shear modulus (in 

GPa) (G)

C11

(GPa)
C12

(GPa)
C44

(GPa)
E

(GPa)
G

(GPa)
Mechanical stability criteria[9]

Pd 205.90 150.72 61.84 131.91 48.14
Ag 101.47 81.10 29.98 61.08 22.06

PbAuGa 71.09 45.50 3.97 21.50 7.50
CsKNa 4.77 1.82 0.03 1.70 0.61

Criteria (i) C11 - C12 > 0 met.
Criteria (ii) C11 + 2C12 > 0 

met.
Criteria (iii) C44 > 0 met.

It is important to verify the energy stability of PbAuGa and CsKNa, which is helpful for 

judging whether they can be synthesized experimentally. The cohesive energy of a solid refers to 

the energy required to separate constituent atoms apart from each other and to bring them to an 

assembly of neutral free atoms[10], it is a widely accepted parameter used to evaluate the stability 

of materials. We calculate the cohesive energy Ecoh using the following formulas[11]:

  \* MERGEFORMAT (2)
3

A B c ABC
coh

E E E EE   


where EA, EB, and EC are the total energy of three isolated elements in PbAuGa, respectively, 

EABC is the total energy of the PbAuGa. If EABC is lower than the sum of EA, EB, and EC,  Ecoh will 

be positive meaning the PbAuGa and CsKNa could exist in a stable crystalline state rather than in 

a free (single element) state.

Table S4. The energy of compounds and isolated elements in PbAuGa and CsKNa

Energy 

(Ry)

Energy 

(Ry)

PbAuGa -391.88 CsKNa -209.86

Pb -135.21 Cs -54.05

Au -85.17 K -58.72

Ga -170.85 Na -96.93

According to the data shown in Table S4, the calculated cohesive energies are 0.22 Ry/atom, 
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and 0.053 Ry/atom for CsKNa and PbAuGa, respectively. The positive cohesive energies 

demonstrate the stability of PbAuGa and CsKNa, which is a necessary condition for experimental 

synthesis.

The cumulative  as a function of frequency for Pd, Ag, PbAuGa, and CsKNa are p p
p


displaced in Figure S5, it is clear that the cumulative  of all four systems increase with the p p
p


frequency, but the cumulative  of PbAuGa and CsKNa increase faster than that of Pd and Ag p p
p


in low frequency range. It means the acoustic modes of PbAuGa and CsKNa contribute the most 

to , being about 76% and 78%, respectively. Compared with the other three systems, there is p p
p


a peak appeared in the cumulative  curve of CsKNa after the frequency of 2 THz which is the p p
p


HLO frequency range. The contribution of HLO in CsKNa (12%), which is higher than the 

counterpart of PdAuGa (5%), the  peak can also be found in Figure 2(b). p p
p


Figure S5. The cumulative  as a function of frequency for Pd, Ag, PbAuGa, and CsKNa.p p
p

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Figure S6 shows the potential energy change with respect to the displacement of Au and Cs 

atoms along the eigenvector of the LA branch. The displacement factor=0 on the x-axis means that 

the atom is in the equilibrium position, and the absolute value of the displacement factor increasing 

means that the amplitude of the atom vibrates around the equilibrium position. The dashed blue 

and black lines represent the perfect harmonic behavior of PbAuGa and CsKNa, respectively. It is 

found that the potential wall becomes nonlinear with the displacement factor increasing, indicating 

more asymmetry dependence of restoring forces on atomic displacement amplitudes[12, 13]. 

Compared to the potential wall of PbAuGa, the potential wall of CsKNa deviates from the 

harmonic behavior more pronounced, implying stronger phonon anharmonic behavior. We 

conclude that rattlers Au and Cs in PbAuGa and CsKNa respectively, act as loosely bonded atoms, 

reduce phonon harmonic behavior, and thus lower the  of PbAuGa and CsKNa, respectively.p p
p


Figure S6. The potential energy of PbAuGa and CsKNa as a function of displacement factor. The dashed 

lines are fitting curves by perfect harmonic formula.
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To understand the chemical bonding environment in PbAuGa and CsKNa, we further 

calculated the electron localization function (ELF) since ELF is a simple measure of electron 

localization in an atomic and molecular system. The ELF values are defined between 0 and 1, in 

which ELF = 1 means the perfect localization and ELF = 0.5 corresponds to the electron gas. Here 

the ELFs of nearest neighbor composite elements in PbAuGa and CsKNa are shown in Figure S7, 

including the perspective view of ELFs in Figure S7 (a) and (c), and the plane view of ELFs in 

Figure S7 (b) and (d). The following can be learned: Au and Cs atoms act as the rattlers, and their 

physical binding feature accounts for the global weak bonding environment in PbAuGa and 

CsKNa. It should be noted that electron cloud is mainly occupied between Au-Pb and Au-Ga 

atoms, and the weak interaction is the key determinant in the structural unit. It is more obvious in 

the CsKNa that the Na atom possesses an asymmetrically distributed electron cloud, with a higher 

localized electron between the K-Na bond illustrating the covalent bonding. In contrast, the atomic 

density of Na atoms in the opposite direction is very weak, which is due to rattle atom Cs. A similar 

conclusion can also be found in paper[14], where Bi5CuS8 exhibits a low , of around 0.6 W/mK, l

and the corresponding microscopic mechanism originates from the anharmonic and anisotropic 

vibration of the Cu atom, the ionic bond feature around the Cu atom, and the global weak bonding.

Figure S7. The ELFs of PbAuGa and CsKNa. (a) and (c) the perspective view of ELF, (c) and (d) the 

plane view of ELF
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The contribution of phonon thermal conductivity on thermal conductivity is quantified by 

, the raw data , , and of 21 pure metals and intermetallic compounds is p e DFT
p total  p p

p
 p e

p
 p e

e


listed in Table S5. Some of the data is from reference[15]. In Table S5, the DFT predictions of 

electrical conductivity σ and total thermal conductivity .  denotes the DFT p e p e
total p e     p e

p


phononic thermal conductivity considering p-e coupling,  denotes the electronic thermal p e
e


conductivity considering p-e coupling. Furthermore, the effect of p-e coupling on phonon thermal 

conductivity is determined by . We relate the increase in thermal conductivity  p p p e p p
p p p    

to the estimated electronic component of the thermal conductivity using the Wiedemann-Franz 

law, and find that our data are consistent with conventional Sommerfeld value of the Lorenz 

number.
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Table S5. The raw data , , and  of 21 pure metals and intermetallic compounds. p p
p
 p e

p
 p e

e


 is the Sommerfeld value of the Lorenz number[16], 2 2 2 8 2 2
0 (3 ) 2.44 10BL k e V K    

, where T is the temperature. The data other than Pd, Ag, PbAuGa, and CsKNa are taken ( )p e
eL T 

from Ref.[15].

System
 p p

p


(W/mK)

(Wp e
p


/mK)

 p e
e


(W/mK)

 DFT
total

(W/mK)

(p e DFT
p total 

%)

 p p p e p p
p p p    

 (%)

σ

(×107 Ω−1 m−1 ) 0

L
L

Pd 20.15 14.25 80.45 94.7 15.05 29.28 1.39 0.79

Ag 6.11 5.86 396.49 402.35 1.46 4.09 5.5 0.98

Pb 1.12 0.89 43.31 44.2 2.01 20.54 0.59 1.00

Au 3.05 2.80 273.45 276.25 1.01 8.20 3.63 1.03

Cu 19.49 17.42 361.32 378.74 4.60 10.62 5.27 0.94

Al 10.02 8.95 232.53 241.49 3.71 10.68 3.37 0.94

Mg 9.27 7.15 178.20 185.35 3.86 22.87 2.43 1.00

Pt 8.67 6.49 89.75 96.24 6.74 25.14 1.23 1.00

Ni 27.79 15.33 84.53 99.86 15.35 44.84 1.51 0.76

Ti 11.92 5.32 25.31 30.63 17.37 58.3 0.38 0.91

Co 20.60 12.99 78.65 91.65 14.17 36.94 1.16 0.92

Mn 6.17 3.02 4.98 8.00 37.75 51.05 0.08 0.86

NiAl 12.31 6.02 63.89 69.91 8.61 51.10 0.86 1.02

Ni3Al 7.78 4.72 31.95 36.66 12.88 39.33 0.43 1.02

TiAl 7.88 5.17 7.34 12.51 41.33 34.39 0.10 0.96

FeAl 7.25 3.24 8.49 11.72 27.65 55.31 0.13 0.90

CoAl 9.81 4.83 40.85 45.67 10.58 50.76 0.59 0.95

Cu3Au 2.37 1.89 118.36 120.25 1.57 20.25 1.66 0.98

CuAu 3.32 2.32 132.46 134.78 1.72 30.12 1.83 0.99

PbAuGa 0.066 0.064 17.42 17.48 0.37 3.03 0.24 0.99

CsKNa 0.032 0.031 10.76 10.80 0.29 3.13 0.16 0.92
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In order to consider the effect of p-e coupling on phononic thermal conductivity, we compare 

the scattering rate with or without p-e coupling in Figure S8. Combining Figure 7 and Table S5, 

Pd and CsKNa are chosen as representatives due to their  exist big differences.  p p p e p p
p p p    

It is obvious that scattering rates of Pd, PbAuGa, and CsKNa are enhanced when the p-e coupling 

is considered, leading to lower phononic thermal conductivity. Comparatively speaking, the 

change of PbAuGa and CsKNa scattering rate is very tiny, indicating the weak p-e coupling effect 

which is consistent with the value  in Figure 7. p p p e p p
p p p    

Figure S8. Comparison of p-e and p-p coupling scattering rate of (a) Pd, (b) PbAuGa, and (c) CsKNa.
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