Supporting Information

1T MoS₂/CoS₂ Heterostructures Enabling Enhanced Resistive Switching Behavior in Sodium Alginate-based Flexible Memristors

Zipan Jiao^a, Xiaoyan Lan^a, Xinglan Zhou^a, Kunjie Wang^a, Haoran Zong^b, Peng Zhang^{a, *} and Benhua Xu^{b, *}

^a Qinghai Provincial Engineering Research Center of High-Performance Light Metal Alloys and Forming, Qinghai Provincial Key Laboratory of New Light Alloys, Qinghai University, Xining 810016, China

^b Chemical Engineering College, Qinghai University, Xining 810016, China

*Correspondence: zhangpeng@qhu.edu.cn (P. Zhang); xubenhua@qhu.edu.cn (B. H.

Fig. S1 XRD pattern of Co precursor.

Fig. S2 (a) 1T MoS_2 nanosheets and (b) CoS_2 nanowires Raman spectra.

Fig. S3 (a-d) SEM images of Co precursor, 1T MoS₂ nanosheets, CoS₂ nanowires and 1T MoS₂/CoS₂ nanorods; (e-g) TEM images of 1T MoS₂ nanosheets, CoS₂ nanowires and 1T MoS₂/CoS₂ nanorods; (h-i) HRTEM images of 1T MoS₂ nanosheets and CoS₂ nanowires.

Fig. S4 EPR spectra of CoS2 nanowires, 1T MoS2 nanosheets and 1T MoS2/CoS2 nanorods.

Fig. S5 The I-V curves of Al/1T MoS_2/CoS_2 -SA/ITO/PET device with the compliance current is a)

10 µA; (b) 100 µA; c) 10 mA.

Fig. S6 The Double logarithmic plots of current and voltage for I-V curves of Al/1T MoS₂/CoS₂-SA/ITO/PET device with the compliance current is (a-b) 10 μ A; (c-d) 100 μ A; (e-f) 10 mA.

Fig. 7 The SEM image of Al/1T MoS₂/CoS₂-SA/ITO/PET device surface.

Fig. S8 The I-t diagram of (a) Al/SA/ITO/PET, (b) Al/CoS₂-SA/ITO/PET and (c) Al/1T MoS_2 -

SA/ITO/PET device at a read voltage of 0.05 V.

Fig. S9 I-V diagram of Al/1T MoS₂/CoS₂-SA/ITO/PET device coated with two layers.

Fig. S10 I-V diagram of Al/1T MoS₂/CoS₂-SA/ITO/PET device coated with three layers.

Fig. S11 Schematic diagram of switching mechanism in Al/CoS₂-SA/ITO/PET device.

Fig. S12 Schematic diagram of switching mechanism in Al/1T MoS₂-SA/ITO/PET device.

Structures	V_{reset}/V_{set}	Endurance	Retention	Referen
	(V)	cycles	time (s)	ce
Al/1T MoS ₂ /CoS ₂ -SA/ITO/PET	-1.73/1.7	100	104	This
				work
Au/MoS ₂ /Au	-0.9/2.7	20	104	[1]
Ag/MoS ₂ /Ti/Au	-0.4/0.3	350	104	[2]
Ag/PVP: MoS ₂ /HfO _x /ITO	-1.18/2.1	500	104	[3]
Ag/MoS ₂ /polymer/Cr/Au	-0.7/0.5	300	10 ³	[4]
Ti/Au/MoS ₂ /PDMS	-15/15	100	10 ³	[5]
Al/MoS2-PDA-PFMMA/ITO	-0.9/1.1	60	104	[6]
ITO/(MoS ₂ :PS)/Al	-2.5/2.7	25	400	[7]
Cu/gMoS2-PMMA/ITO	1.3/-1.2	100	104	[8]
Ti/MoS2-rGO/ITO	-0.48/0.5	200	104	[9]
Ag/MoS ₂ /Au/Ti/PET	-0.8/1.1	90	104	[10]

Table S1. Comparison of the key performance parameters of MoS₂-based flexible RRAM devices.

References

1 S. Bhattacharjee, E. Caruso, N. McEvoy, C. Ó Coileáin, K. O'Neill, L. Ansari, G. S. Duesberg, R. Nagle, K. Cherkaoui, F. Gity and P. K. Hurley, *ACS Appl. Mater. Interfaces*, 2020, **12**, 6022–6029.

2 A. Bala, A. Sen, J. Shim, S. Gandla and S. Kim, ACS Nano, 2023, 17, 13784-13791.

3 I. Varun, A. K. Mahato, V. Raghuwanshi and S. P. Tiwari, *IEEE Trans. Electron Devices*, 2020, **67**, 3472–3477.

4 J. Chai, S. Tong, C. Li, C. Manzano, B. Li, Y. Liu, M. Lin, L. Wong, J. Cheng, J. Wu, A. Lau, Q. Xie, S. J. Pennycook, H. Medina, M. Yang, S. Wang and D. Chi, *Adv. Mater.*, 2020, **32**, 2002704.

5 E. Lee, J. Kim, S. Bhoyate, K. Cho and W. Choi, *Chem. Mater.*, 2020, **32**, 10447–10455.

6 Yan, Q., Fan, F., Zhang, B., Liu, G., & Chen, Y., *European Polymer Journal*, 2022, **174**, 111316.

7 L. T. Manamel, S. C. Madam, S. Sagar and B. C. Das, *Nanotechnology*, 2021, **32**, 35LT02.

8 S. Bhattacharjee, U. Das, P. K. Sarkar and A. Roy, *Organic Electronics*, 2018, **58**, 145–152.

9 L. Wu, J. Guo, W. Zhong, W. Zhang, X. Kang, W. Chen and Y. Du, *Applied Surface Science*, 2019, **463**, 947–952.

10 R. M. Pallares, X. Su, S. H. Lim and N. T. K. Thanh, J. Mater. Chem. C, 2016, 4, 53-61.