Supporting Information

Large piezoelectricity and high depolarization temperature in BiScO₃-

BiYbO₃-PbTiO₃ ceramics for energy harvesting at elevated

temperatures

Haiyan Zhao^{a,*}†, Xiaole Yu^{b,*}†, Qiangqiang Guo^a, Huijing Yang^a, Fanlin Li^a, Suyang Zhang^a, Xiaoyuan Wu^a

^a Tangshan Normal University, Tangshan 063000, China

^b Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China

* Corresponding authors.

E-mail addresses: cnzhaohy@163.com (H. Zhao), xlyu66@163.com (X. Yu)

[†]These authors contributed equally to this work.

Fig. S1 $\ln(1/\varepsilon - 1/\varepsilon_{max})$ as a function of $\ln(T - T_{max})$ at 1 kHz for the (1 - x - y)BS - xBY - yPT (0.005 $\leq x \leq$ 0.015, 0.605 $\leq y \leq$ 0.625) and BS-PT ceramics. The solid lines are the fitting results of Curie-Weiss relationship $1/\varepsilon - 1/\varepsilon_{max} = (T - T_{max})^{\gamma}/C$.

Fig. S2 The SEM images of (1-x-y)BS-xBY-yPT ceramics: (a) x/y = 0.005/0.610, (b) x/y = 0.015/0.610, (c) x/y = 0.01/0.605, (d) x/y = 0.01/0.610, (e) x/y = 0.01/0.615, (f) x/y = 0.01/0.620, (g) x/y = 0.01/0.625.

Fig. S3 The mean grain size (MGS) distribution of (1-x-y)BS-xBY-yPT ceramics: (a) x/y = 0.005/0.610, (b) x/y = 0.015/0.610, (c) x/y = 0.01/0.605, (d) x/y = 0.01/0.610, (e) x/y = 0.01/0.615, (f) x/y = 0.01/0.620, (g) x/y = 0.01/0.625.

Fig. S4 Rietveld refinement of poled (a-d) BS-PT and (e-h) BS-BY-PT ceramics by an *in situ* XRD test at different temperatures. Pt diffraction peak is caused by the Pt heating substrate in the instrument test.

Fig. S5 The frequency-dependent the peak-to-peak value of output open-circuit voltage ($V_{\text{Open, p-p}}$) for the BS-BY-PT HT-PEH under 1g acceleration excitation at 350 °C.

The peak-to-peak value of output open-circuit voltage ($V_{Open, p-p}$) of BS-BY-PT HT-PEH increases first and then decreases with test frequency (*f*), and reaches the maximum value at ~33.4 Hz, which is recorded as the resonant frequency of the BS-BY-PT HT-PEH.

Fig. S6 The load resistance-dependent output voltage and current density for the BS-BY-PT HT-PEH under 1g acceleration excitation at 350 °C.

When the load resistance of the connection increases, the voltage of the BS-BY-PT HT-PEH increases while the current density decreases, which conforms to Ohm's law.