Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023 ## A highly thermally stable Y₃AlGa₄O₁₂:Cr³⁺ phosphor for near-infrared pc-LEDs Zhihang Yue, $^{a,\,b}$ Dashuai Sun, b* Zeyu Lyu, b Sida Shen, b Chengliang Lyu, $^{a,\,b}$ Pengcheng Luo b and Hongpeng You $^{a,\,b,\,c*}$ - ^a School of Rare Earths University of Science and Technology of China Hefei 230026, P. R. China. E-mail: hpyou@ciac.ac.cn - ^b Key Laboratory of Rare Earths, Chinese Academy of Sciences; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, P. R. China. E-mail: dssun@gia.cas.cn - ^c State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China - * Corresponding author. Fax: +86 431 8 ## **Figures and Figure Captions** **Figure S1** XRD patterns of $Y_3AlGa_{4-x}O_{12}$: xCr^{3+} (x = 0-0.06, 0.10, 0.12, 0.16, 0.18) samples, compared with the simulated XRD pattern of $Y_3Al_{0.98}Ga_{4.02}O_{12}$ (PDF#04-007-8953). **Figure. S2** (a) PL and PLE spectra of YAGG:0.1Cr³⁺ when T= 6 K; (b)Tanabe–Sugano energy-level diagram for a 3d³ system in an octahedral crystal field.