Supporting Information

Rigidly linked dinuclear platinum(II) complexes showing intense,

excimer-like, near infra-red luminescence

Piotr Pander, Melissa T. Walden, Rebecca J. Salthouse, Amit Sil, Dmitry S. Yufit,

Fernando B. Dias and J. A. Gareth Williams

Table of contents

1.	General	2
2.	Synthesis	3
3.	Crystallography	11
4.	Calculations	14
5.	Photophysics	
6.	References	24

1. General

Calculations

DFT/TD-DFT calculations were performed using Orca 4.2.1 software^{1–3} and the results were visualised using Gabedit 2.5.0.⁴ Ground state (S₀) and triplet excited state (T₁) geometry were calculated using the BP86⁵ functional and the def2-svp⁶ basis set for all atoms with effective core potential (ECP) for platinum. Single-point energy calculations were conducted using time-dependent density functional theory (TD-DFT) with the Tamm-Dancoff approximation (TDA), using the CAM-B3LYP⁷ functional and the same basis set. Calculation time was greatly reduced using the RIJCOSX^{8,9} approximation with def2/J¹⁰ auxiliary Coulomb-fitting basis set, dense grid (Grid6, Gridx6), and tight SCF and geometry optimization criteria. The calculation uses atom-pairwise dispersion correction with the Becke-Johnson damping scheme (D3BJ).^{11,12} All MO iso surfaces were rendered with iso value of 0.03 if not stated otherwise. All geometry optimisations were followed by vibrational frequency calculation to confirm minimal energy configurations.

Photophysics

Absorption spectra of solutions were recorded with UV-3600 double beam spectrophotometer (Shimadzu). Photoluminescence (PL) spectra of solutions and films were recorded using a QePro compact spectrometer (Ocean Optics), or a FluoroMax-2 fluorescence spectrometer (Jobin Yvon). Time-resolved photoluminescence measurements in solution were recorded with an Horiba DeltaFlex TCSPC system using a 330 nm SpectraLED or a 405 nm Delta Diode light source. Solutions were degassed using 5 freeze-pump-thaw cycles.¹³ Photoluminescence decays in film were recorded using nanosecond gated luminescence and lifetime measurements (from 400 ps to 1 s) using the third harmonic (355 nm) of a pulsed Nd:YAG laser (EKSPLA) as the excitation source. Temperature-dependent experiments in films were conducted using a liquid nitrogen cryostat VNF-100 (sample in flowing vapour, Janis Research) under nitrogen atmosphere, while measurements at room temperature were recorded under vacuum in the same cryostat.

2. Synthesis

Compound **1a** was prepared as described previously.¹⁴ Crystals of **1a** suitable for X-ray diffraction analysis were obtained in the present study from a methanol solution: see Section 3 below. Compound **2a** was prepared in a similar way as for **1a**, as illustrated in **Scheme S2.1**. The intermediate compound 2,2'-(5-bromo-1,3-phenylene)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) was prepared as described elsewhere,¹⁵ and all other compounds are characterised below.

Scheme S2.1 Synthetic route to 2a. Reaction conditions: (i) Miyaura borylation: B₂pin₂, KOAc, Pd(dppf)Cl₂, Dioxane, 80°C, 18 h; (ii) Suzuki coupling: Na₂CO₃ (1 M, aq.), Pd(PPh₃)₄, DME, 85°C, 18 h; (iii) Complexation: K₂PtCl₄, acetic acid, 118°C, 1 week.

CF₃dpyb-Br

This compound was prepared *via* a Suzuki cross-coupling reaction. Crude 1,3di(pinacolatoboron)-5-bromobenzene (2.59 g, 6.35 mmol), 2-bromo-4-(trifluoromethyl)- pyridine (2.87 g, 0.013 mmol), and aqueous Na₂CO₃ (5.39 g, 50.8 mmol) were added with DME (25 mL) to a Schlenk tube and degassed by three freeze-pump-thaw cycles. The catalyst Pd(PPh₃)₄ (0.367 g, 0.318 mmol) was added and the reaction mixture heated at 85°C for 18 h under an atmosphere of nitrogen. On cooling to room temperature, the mixture was extracted with CH₂Cl₂, the extracts dried over anhydrous magnesium sulphate, and the solvent removed under reduced pressure. The crude mixture was purified by column chromatography on silica (hexane: ethyl acetate gradient, $R_f = 0.4$ in 90:10) to yield the title compound as a white solid (0.740 g, 26%); ¹H NMR (400 MHz, CDCl₃) $\delta_H = 8.95$ (2 H, d, J 5.0, H⁶), 8.68 (1 H, t, J 1.6, H⁴⁺), 8.33 (2 H, d, J 1.6, H²⁺), 8.06 (2 H, dt, J 1.7, 0.8, H³), 7.57 (2 H, dt, J 4.9, 1.3, H⁵); ¹⁹F NMR (376 MHz, CDCl₃) $\delta_F = -64.7$; MS ESI (ES⁺) *m/z* 447.0 ([M+H]⁺, 100%); HRMS (ES⁺) *m/z* 446.9937 [M+H]⁺, calc. for [C₁₈H₁₀N₂BrF₆N₂] 446.9932.

CF₃dypb-Bpin

This compound was prepared *via* a Miyaura borylation reaction. **CF₃dypb-Br** (340 mg, 0.762 mmol), B₂pin₂ (233 mg, 0.915 mmol), and KOAc (449 mg, 4.57 mmol) were added to a Schlenk tube with dry 1,4,-dioxane (10 mL) and degassed by three freeze-pump-thaw cycles. The catalyst PdCl₂(dppf) (56 mg, 0.076 mmol) was added and the reaction mixture heated at 85°C overnight under an atmosphere of nitrogen. The crude mixture was filtered and washed with CH₂Cl₂. Purification by flash column chromatography (hexane: ethyl acetate on silica, R_f = 0.3 in 80:20) yielded the product as a white solid (305 mg, 81%); ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H} = 9.00 - 8.86$ (3 H, m, H⁶ and H⁴⁺), 8.53 (2 H, d, J 1.9, H²⁺), 8.11 (2 H, dt, J 1.5, 0.8, H³), 7.51 (2 H, ddd, J 5.0, 1.6, 0.8, H⁵), 1.43 (12 H, s, H^{Bpin}); MS ESI (ES)⁺ *m/z* 495.4 ([M+H]⁺, 100%); HRMS (ES⁺) *m/z* 494.1709 [M+H]⁺, calc. for [C₂₄H₂₂N₂O₂¹⁰BF₆] 494.1715.

Compound 2a'

This compound was prepared *via* a Suzuki cross-coupling reaction as described for **CF₃dpyb-Br** but using crude **CF₃dpyb-Bpin** (754 mg, 1.53 mmol), 4,5-dibromo-2,7-di-*tert*-butyl-9,9-dimethylxanthene (333 mg, 0.693 mmol), aqueous Na₂CO₃ (588 mg, 5.54 mmol), Pd(PPh₃)₄ (40 mg, 0.035 mmol) and DME (6 mL). The crude mixture was purified by column chromatography on silica (hexane: ethyl acetate gradient, $R_f = 0.2$ in 90:10) to yield the title compound as a white solid (603 mg, 82%); ¹H NMR (400 MHz, CDCl₃) $\delta_H = 8.70$ (4 H, d, J 5.0, H⁶), 8.24 (2 H, t, J 1.7, H⁴⁺), 7.99 (4 H, d, J 1.7, H²⁺), 7.68 (4 H, d, J 1.5, H³), 7.55 (2 H, d, J 2.3, H^f), 7.26 – 7.23 (2 H, m, H^d), 7.14 (4 H, dd, J 5.0, 1.5, H⁵), 1.87 (6 H, s, H^{Me}), 1.40 (18 H, s, H^{rBu}); MS ESI (ES⁺) *m/z* 1053.9 (M⁺, 82%).

Compound 2a

Potassium tetrachloroplatinate(II) (98 mg, 0.237 mmol) was added to a solution of **2a'** (50 mg, 0.047 mmol) in acetic acid (10 mL) in a dry Schlenk flask and the solution was degassed using three freeze-pump-thaw cycles. The reaction mixture was then heated at reflux (118°C) for 60 h under nitrogen before cooling to room temperature. The crude solid was purified by preparative column chromatography on silica (DCM: MeOH gradient) to yield the target dinuclear complex **2a** as a yellow-orange solid (6.5 mg, 9%); ¹H NMR (700 MHz, CDCl₃) $\delta_{\rm H}$

= 9.53 (4 H, d, J 5.8, {¹⁹⁵Pt 32}, H⁶), 7.54 (2 H, d, J 2.4, H^d or H^f), 7.48 (4 H, s, H²), 7.41 (4 H, s, H³), 7.38 (4 H, dd, J 5.8, 1.9, H⁵), 7.22 (2 H, d, J 2.3, H^d or H^f), 1.83 (6 H, s, H^{Me}), 1.41 (18 H, s, H^{t-Bu}); ¹³C NMR (176 MHz, CDCl₃) $\delta_C = 167.9$ (C²), 161.8 (C⁴), 154.0 (C⁶), 146.2 (C^e), 144.1 (C^b), 139.3 (C¹), 129.3 (C^c), 128.1 (C^a), 126.7 (C²), 125.8 (C^d or C^f), 123.3 (C^d or C^f), 119.6 (C⁵), 115.1 (C³), 34.7 (C^g), 34.1 (C^{t-Bu}), 33.7 (C^{Me}); ¹⁹F NMR (376 MHz, CDCl₃) $\delta_F = -65.54$; MS ESI (ES⁺) *m/z* 1555.7 [M+MeCN]⁺; HRMS ASAP (AP⁺) *m/z* 1477.8969 [M-Cl]⁺, calc. for [C₅₉H₄₄ClF₁₂N₄OPt₂] 1478.2312; Anal. Calc. for C₅₉H₄₄Cl₂F₁₂N₄OPt₂: C, 46.8; H, 2.93; N, 3.50 %. Found: C, 46.90; H, 3.10; N, 3.50 %.

Compounds 1b, 2b, and 3b were obtained from their respective mononuclear counterparts 1, 2, and 3 using the procedure illustrated in Scheme S2.2. Complexes 1, 2 and 3 were obtained as described elsewhere.^{16–18} The intermediate 2,7-di-*tert*-butyl-4,5-diethynyl-9,9-dimethylxanthene was synthesised following a previously reported procedure.¹⁹

Scheme S2.2 Synthetic route to the acetylide linked dinuclear compounds 1b, 2b, and 3b.

Compound 1b

2,7-Di-tert-butyl-4,5-diethynyl-9,9-dimethylxanthene (7.5 mg, 0.02 mmol, prepared as described in earlier literature¹⁹) and a solution of NaOMe in MeOH (5 M, 1 mL, 0.05 mmol) were added to MeOH (15 mL) in a Schlenk tube under nitrogen. A solution of Pt(dpyb)Cl, **1**, (18 mg, 0.04 mmol) in DCM (15 mL) was then added. The mixture was stirred at 60°C for 48 h. On cooling to ambient temperature, the solvent was removed under reduced pressure and the resulting orange solid was washed with H₂O, MeOH and Et₂O. Recrystallisation from DCM / *n*-hexane gave the desired product (10 mg, 41 %); ¹H NMR (700 MHz, Chloroform-*d*) $\delta_{\rm H}$ = 9.51 (d, *J* = 5.5 Hz, 4H, H⁶), 7.47 – 7.44 (m, 6H, H^{d/f} and H⁴), 7.24 (d, *J* = 2.4 Hz, 2H, H^{d/f}), 7.08 (dd, *J* = 7.8, 1.3 Hz, 4H, H³), 6.97 – 6.93 (m, 8H, H³' and H⁵), 6.85 (t, *J* = 7.5 Hz, 2H, H^{4'}), 1.70 (s, 6H, H^{Me}), 1.33 (s, 18H, H^{tBu2}); ¹³C NMR (176 MHz, CDCl₃) $\delta_{\rm C}$ = 168.8 (C²), 156.8 (C⁶), 143.9 (C^e), 142.3 (C^{2'}), 136.7 (C^{d/f}), 128.9 (C^e), 128.1 (C⁴), 122.8 (C^{3'}), 122.8 (C⁵), 121.5 (C^{4'}), 119.4 (C^{d/f}), 118.1 (C³), 34.7 (C^g), 34.4 (C^{tBu1}), 32.6 (C^{Me}), 31.6 (C^{tBu2}); MS (ASAP⁺) *m/z* = 1221.3 [M+H]⁺; HRMS (ASAP⁺) *m/z* = 1221.3357 [M+H]⁺; calculated for [C₅₉H₅₁N₄O¹⁹⁴Pt₂]⁺ 1221.3331. Anal. calc. for C₆₀H₅₃N₄OCl₂Pt₂: 55.13; H, 4.09; N 4.29 %; found C, 55.49; H, 4.15; N 3.91 %.

Compound 2b

The complex was prepared using the same procedure as **1b**, but using **2** in place of **1**. The complex was obtained as a dark red solid in 73 % yield; ¹H NMR (700 MHz, Chloroform-*d*) $\delta_{\rm H} = 9.60$ (d, J = 5.8 Hz, 4H, H⁶), 7.39 (d, J = 2.3 Hz, 2H, H^{d/f}), 7.30 (d, J = 2.3 Hz, 2H, H^{d/f}), 7.25 (s, 4H, H³), 7.18 (d, J = 5.2 Hz, 4H, H⁵), 7.11 (s, 4H, H³'), 1.74 (s, 6H, H^{Me}), 1.40 (s, 18H, H^{tBu2'}), 1.35 (s, 18H, H^{tBu2}); ¹³C NMR (176 MHz, Chloroform-*d*) $\delta_{\rm C} = 178.6$ (C^{1'}), 169.9 (C^{2'}), 157.9 (C⁶), 150.3 (C^b), 145.5 (C^{4'}), 144.5 (C^e), 140.7 (C²), 129.4 (C^g), 127.1 (C^{d/f}), 121.9 (C⁴), 121.4 (C^{3'}), 119.7 (C^{d/f}), 119.0 (C⁵), 116.0 (C^{alk1}), 114.3 (C³), 35.2 (C^{tBu1'}), 34.5 (C^{tBu1}), 31.9 (C^{Me}), 31.7 (C ^{tBu2'}), 31.6 (C ^{tBu2}); ¹⁹F NMR (376 MHz, CDCl₃) $\delta_{\rm F} = -65.01$; MS (ASAP⁺) m/z = 1605.4 [M+H]⁺; HRMS (ASAP⁺) m/z = 1605.4097 [M+H]⁺; calculated for [C₇₁H₆₃N₄O₁F₁₂¹⁹⁴Pt₂]⁺1605.4105.

Compound 3b

This compound was prepared using the same procedure as **1b**, but using **3** in place of **1**. The material was obtained as a dark red solid in 35 % yield. ¹H NMR (700 MHz, CDCl₃) $\delta_{\rm H} = 9.67$ (d, J = 6.2 Hz, 4H, H⁸), 8.34 (d, J = 8.5 Hz, 4H, H⁶), 7.68 (d, J = 7.8 Hz, 4H, H^{3'}), 7.54 (d, J =

2.3 Hz, 2H, H^{d/f}), 7.40 (d, J = 7.9 Hz, 4H, H³), 7.35 (ddd, J = 7.9, 6.6, 1.0 Hz, 4H, H⁴), 7.30 (d, J = 2.4 Hz, 2H, H^{d/f}), 7.28 (ddd, J = 8.1, 6.6, 1.4 Hz, 4H, H⁵), 7.14 (d, J = 6.2 Hz, 4H, H⁷), 7.00 (t, J = 7.7 Hz, 2H, H^{4'}), 1.77 (s, 6H, H^{Me}), 1.37 (s, 18H H^{tBu2}); ¹³C NMR (176 MHz, CDCl₃) $\delta_{\rm C} = 186.7$ (C^{1'}), 167.6 (C²), 148.8 (C⁸), 144.0 (C^{2'}), 144.0 (C^e), 136.4 (C⁹), 129.9 (C⁴), 129.0 (C^g), 128.2 (C^{f/d}), 127.8 (C^{3'}), 127.2 (C³), 127.0 (C⁵), 126.1 (C¹⁰), 125.1 (C⁶), 121.2 (C^{4'}), 121.1 (C⁷), 119.6 (C^{d/f}), 34.4 (C^{tBu1}), 32.7 (C^{Me}), 31.6 (C^{tBu2}). Anal. calc. for C₇₅H₅₈N₄OPt₂: 63.77; H, 4.11; N 3.94 %; found C, 64.05; H, 4.29; N 3.71 %. Crystals of this compound suitable for X-ray diffraction analysis (see Section 3 below) were obtained by diffusion of hexanes into a solution of the compound in CH₂Cl₂.

3. Crystallography

The X-ray single crystal data have been collected on a Bruker D8Venture (Photon100 CMOS detector, IµS-microsource, focusing mirrors) diffractometer equipped with a Cryostream (Oxford Cryosystems) open-flow nitrogen cryostat at the temperature 120.0(2) K using λ MoK α (compounds **1b** and **2**) or λ CuK α (compound **1a**) radiation ($\lambda = 0.71073$ Å and 1.54178Å respectively). The data for compound **3b** were collected at 100.0(2) K at I-19 beamline (Dectris Pilatus 2M pixel-array photon-counting detector, undulator, graphite monochromator, $\lambda = 0.6889$ Å) at the Diamond Light Source, Oxfordshire and processed using Bruker APEXIII software.

All structures were solved by direct methods and refined by full-matrix least squares on F² for all data using Olex2²⁰ and SHELXTL²¹ software. All non-hydrogen atoms were refined in anisotropic approximation, hydrogen atoms were placed in the calculated positions and refined in riding mode. The severely disordered solvent molecule in structure **1b** could not be successfully modelled and was taken into account by applying MASK procedure of Olex2 software package (55 independent electrons corresponding to a chloroform molecule). Crystal data and parameters of refinement are listed in **Table S1** below. Crystallographic data for the structures have been deposited with the Cambridge Crystallographic Data Centre as supplementary publications CCDC 2063389, 2063391, 2063392.

Figure S3.1. The molecular structure of 1a, including the atom numbering scheme.

Figure S3.2. The molecular structure of 1b, including the atom numbering scheme.

Figure S3.3. The molecular structure of 3b, including the atom numbering scheme.

Table S3.1. Crysta	data and str	ructure refinem	nent parameters
--------------------	--------------	-----------------	-----------------

Compound	1a	1b	3b
Empirical formula	$C_{56}H_{52}Cl_2N_4O_2Pt_2$	$C_{60}H_{51}Cl_3N_4OPt_2$	C75H58N4OPt2
Formula weight	1274.09	1340.57	1421.43
Temperature/K	120.0	120.0	100.0
Crystal system	monoclinic	monoclinic	triclinic
Space group	P21/c	P21/c	P-1
a/Å	15.1276(13)	11.1103(8)	12.3705(16)
b/Å	27.580(2)	26.454(2)	14.832(2)
c/Å	11.1881(9)	36.437(3)	17.645(2)
α/°	90	90	65.796(3)
β/°	93.815(5)	96.037(3)	87.028(3)
γ/°	90	90	73.841(3)
Volume/Å ³	4657.6(7)	10649.9(14)	2829.0(7)
Ζ	4	8	2
$\rho_{calc}g/cm^3$	1.817	1.672	1.669
μ/mm ⁻¹	12.508	5.444	4.596
F(000)	2488.0	5232.0	1400.0
Crystal size/mm ³	0.08 × 0.04 ×	0.22 imes 0.18 imes	$0.025 \times 0.015 \times$
	0.005	0.09	0.005
Reflections collected	53291	151553	38279
Independent reflections, Rint	8467, 0.2391	28121, 0.0752	13486, 0.0885
Data/restraints/parameters	8467/0/597	28121/66/1277	13486/15/741
Goodness-of-fit on F ²	0.961	1.133	0.981
Final R ₁ indexes [I>= 2σ (I)]	0.0721	0.0841	0.0864
Final wR ₂ indexes [all data]	0.1808	0.1791	0.2684
CCDC number	2063389	2063391	2063392

4. Calculations

Figure S4.1. Optimised ground (S_0) and triplet excited state (T_1) geometries of 2a.

Figure S4.2. Optimised ground (S_0) and triplet excited state (T_1) geometries of 2b.

Figure S4.3. Optimised ground (S₀) and triplet excited state (T₁) geometries of 3b.

Figure S4.4. Molecular orbital iso surfaces relevant to the T₁-dimer excited state of molecules 2a and 2b.

Figure S4.5. Molecular orbital iso surfaces relevant to the T₁-dimer excited state of molecule **3b**.

Figure S4.6. Relationship between the calculated T₁ energy of the T₁-dimer structures of complexes **1a**, **2a**, **1b-3b** and PL maxima of the excimer-like emission. Black dashed line serves as an eye-guide for the molecules **1b-3b**.

Complex	Energy / eV	Transitions	Character
10	1.91	HOMO→LUMO (71%)	
1a		HOMO-1→LUMO (12%)	$a_{(Pt)} + p_{(Cl)} \rightarrow \pi_{(N^{\wedge}C^{\wedge}N)}$
16	2.22	HOMO→LUMO (50%)	$d_{(Pt)} + p_{(Cl)} + \pi_{(acetylide)} + \pi_{(xanthene)} \rightarrow$
10	2.22	HOMO-2→LUMO (30%)	$\pi_{(\mathrm{N^{\wedge}C^{\wedge}N})}*$
20	1.79	HOMO→LUMO (80%)	d = 1 + n =
2a		HOMO-1→LUMO (13%)	$\mathbf{u}(\mathbf{Pt}) + \mathbf{p}(\mathbf{CI}) \rightarrow \boldsymbol{\pi}(\mathbf{N}^{\mathbf{C}^{\mathbf{N}}}\mathbf{N})^{+}$
26	2.08	HOMO→LUMO (53%)	$d_{(Pt)} + p_{(Cl)} + \pi_{(acetylide)} + \pi_{(xanthene)} \rightarrow$
20		HOMO-2→LUMO (30%)	${\pi_{(\mathrm{N}^{\wedge}\mathrm{C}^{\wedge}\mathrm{N})}}^{*}$
3h	1.06	HOMO→LUMO (33%)	$d_{(Pt)} + p_{(Cl)} + \pi_{(acetylide)} + \pi_{(xanthene)} \rightarrow$
50	1.90	HOMO-2→LUMO (37%)	$\pi_{(\mathrm{N}^{\wedge}\mathrm{C}^{\wedge}\mathrm{N})}^{*}$

Table S4.1 T1 excited state of complexes 1a, 2a, and 1b-3b calculated using the BP86/def2-
SVP//CAM-B3LYP/def2-SVP/CPCM(CH2Cl2) level of theory.

5. Photophysics

Figure S5.1. Photoluminescence decay traces of 1a in 1% wt. film in polystyrene at 295 K and 80 K. Detection wavelengths are indicated in the legend of each figure.

Figure S5.2. Photoluminescence decay traces of 2a in 1% wt. film in polystyrene at 295 K and 80 K. Detection wavelengths are indicated in the legend of each figure.

Figure S5.3. Photoluminescence decay traces of 1b in 1% wt. film in polystyrene at 295 K and 80 K. Detection wavelengths are indicated in the legend of each figure.

Figure S5.4. Photoluminescence decay traces of **2b** in 1% wt. film in polystyrene at 295 K and 80 K. Detection wavelengths are indicated in the legend of each figure.

Figure S5.5. Photoluminescence decay traces of **3b** in 1% wt. film in polystyrene at 295 K and 80 K. Detection wavelengths are indicated in the legend of each figure.

Figure S5.6. Time-resolved photoluminescence spectra of 1a in 1% wt. film in polystyrene at 295 K and 80 K.

6. References

- 1 F. Neese, *WIREs Comput. Mol. Sci.*, 2018, **8**, e1327.
- 2 F. Neese, *WIREs Comput. Mol. Sci.*, 2012, **2**, 73–78.
- S. Lehtola, C. Steigemann, M. J. T. Oliveira and M. A. L. Marques, *SoftwareX*, 2018, 7, 1–5.
- 4 A.-R. Allouche, J. Comput. Chem., 2011, **32**, 174–182.
- 5 A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098–3100.
- 6 F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, 7, 3297–3305.
- 7 T. Yanai, D. P. Tew and N. C. Handy, *Chem. Phys. Lett.*, 2004, **393**, 51–57.
- 8 F. Neese, F. Wennmohs, A. Hansen and U. Becker, *Chem. Phys.*, 2009, **356**, 98–109.
- 9 R. Izsák and F. Neese, J. Chem. Phys., 2011, 135, 144105.
- 10 F. Weigend, Phys. Chem. Chem. Phys., 2006, 8, 1057–1065.
- 11 S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456–1465.
- 12 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- 13 P. Pander, P. Data and F. B. Dias, J. Vis. Exp., DOI:10.3791/56614.
- 14 S. Develay and J. A. G. Williams, *Dalton Trans.*, 2008, 4562.
- 15 S. Lee and M. H. Seo, *Chem. Eur. J.*, 2018, **24**, 17419–17423.
- D. J. Cárdenas, A. M. Echavarren and M. C. Ramírez de Arellano, *Organometallics*, 1999, 18, 3337–3341.
- 17 Z. Wang, E. Turner, V. Mahoney, S. Madakuni, T. Groy and J. Li, *Inorg. Chem.*, 2010, 49, 11276–11286.
- P. Pander, A. Sil, R. J. Salthouse, C. W. Harris, M. T. Walden, D. S. Yufit, J. A. G.
 Williams and F. B. Dias, *J. Mater. Chem. C*, 2022, 10, 15084–15095.
- R. Muñoz-Rodríguez, E. Buñuel, J. A. Gareth Williams and D. J. Cárdenas, *Chem. Commun.*, 2012, 48, 5980–5982.
- 20 O. V Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J.

Appl. Crystallogr., 2009, 42, 339–341.

21 G. M. Sheldrick, Acta Crystallogr. Sect. A, 2008, 64, 112–122.