High carrier mobility and strong electron-phonon coupling in graphene-WS₂ heterobilayers by pressure

Jiapeng Zhen^{1,2,‡}, Qiushi Huang^{3,‡}, Ying Liu^{1,2,*}, Shihui Zhang⁴, Hongliang Dong⁴, Kehong Lv^{1,2}, Jing Qiu^{1,2,*}, Guanjun Liu^{1,2,*}

¹College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 400713, China

²Science and Technology on Integrated Logistics Support Laboratory, National University of Defense Technology, Changsha, Hunan 400713, China

³Beijing Computational Science Research Center, Beijing 100093, China

⁴Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China *Email: <u>liuying@nudt.edu.cn</u>, <u>qiujin@nudt.edu.cn</u>, <u>liu342@nudt.edu.cn</u>

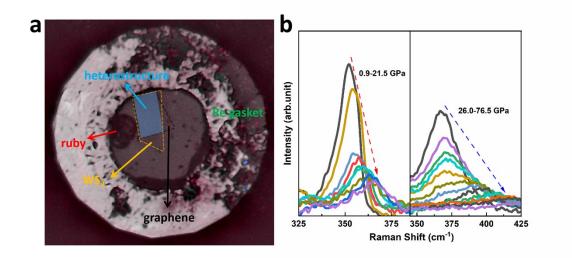


Figure S1: (a)Schematic diagram of heterojunction sample in DAC. (b) The evolution of E_{2g} with pressure.

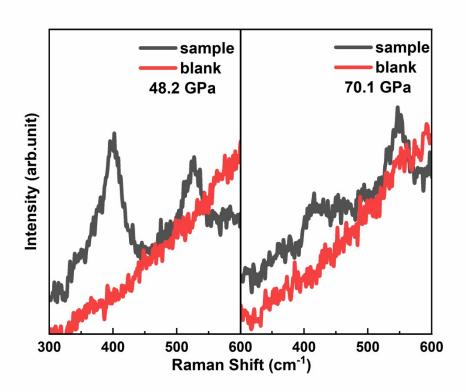


Figure S2: To distinguish true heterojunction signals, the target region signal is compared with the blank area signal under 48.2 and 70.1 GPa.

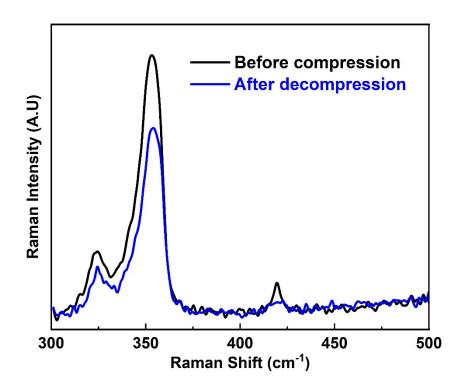


Figure S3: Comparison of Raman data before compression and after decompression.

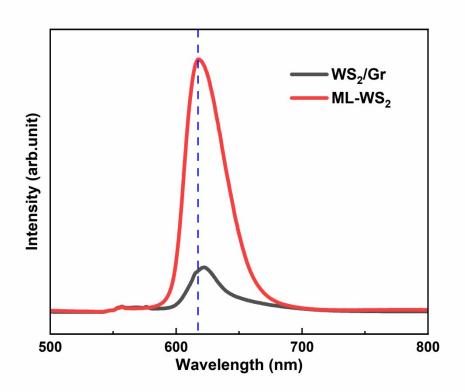


Figure S4: Comparing the PL spectra of WS_2 in the heterojunction with the monolayer WS_2 alone, it can be found that the exciton behavior is significantly weakened after the formation of heterojunction with graphene.