Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary

Information(ESI)

Title: Ultraviolet, self-powered, and large area photodetector based on n-SnO₂/p-

Spiro-OMeTAD organic-inorganic heterojunction

Mengqing Li,^a Huawei Zhou,^{a,*} Jie Yin,^{a,*} and Xianxi Zhang^{a,*}

^a School of Chemistry and Chemical Engineering. College of Materials Science and Engineering. Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage. Liaocheng University. *E-mail: zhouhuaweiopv@163.com. xxzhang3@126.com

Fig. S1 Ultraviolet-visible absorption (a) and reflection spectra (b) of SnO₂-P. Ultraviolet-visible absorption (c) and reflection spectra (d) of Spiro-OMeTAD-P. $hv-(hvF(R\infty))^{1/2}$ curve of SnO₂-P (e)and Spiro-OMeTAD-P (f).

Fig. S2 Mott-Schottky curves of FTO/SnO₂/Spiro-OMeTAD/Au devices.

Fig. S3 (a) XRD pattern of SnO₂ powder; (b) XRD pattern of Spiro-OMeTAD powder; (c) XRD pattern of SnO₂ film; (d) XRD pattern of Spiro-OMeTAD film.

Fig. S4 J-t curves of FTO/Spiro-OMeTAD/Au at different wavelengths with 30 W/m^2 .

Fig. S5 The spectral profiles of UV and white light.