Supporting Information

Superconducting Li₁₁Sb₂ electride at ambient pressure

Yaping Zhao[†], Jiayu Gao[†], Xiaohua Zhang^{*}, Shicong Ding, Yong Liu, and Guochun Yang^{*} State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China

[†]Y.Z. and J.G. contributed equally.

Computational Details

The structural prediction method is based on a global minimization of free energy surfaces merging *ab initio* total-energy calculations with the CALYPSO (Crystal structure AnaLYsis by Particle Swarm Optimization) method.^{1, 2} We carry out a structural search on Li_xSb_y (x = 3-10, and y = 1; x = 5, 7, 9, 11, 13, 15, and y = 2) at 0 K and select pressures of 50, 100, 200, and 300 GPa. In the first step, random structures with certain symmetry are built with atomic coordinates generated by crystallographic symmetry operations. Local optimizations using the VASP code³ are done with the conjugate gradient method and stopped when enthalpy changes became smaller than 1×10^{-5} eV per cell. After processing first generation structures, 60% of them with lower enthalpies are selected to construct the next generation with PSO (Particle Swarm Optimization). 40% of the structures in the new generation are randomly generated. A structure fingerprinting technique of bond characterization matrix is applied to the generated structures, so that identical structures are strictly forbidden. These procedures significantly enhance the diversity of the structures, which is crucial for the structural global search efficiency. In most cases, structural searching simulations for each calculation were stopped after generating 1000 ~ 1500 structures (e.g., about 20 ~ 30 generations).

In order to further analyze the structures with higher accuracy, we select a number of structures with lower enthalpies and perform a structural optimization using density functional theory (DFT) with the generalized gradient approximation (GGA) as implemented in the VASP code.⁴⁻⁶ In all the calculations the cut-off energy for the expansion of wavefunctions in plane waves is set to 800 eV, and the Monkhorst-Pack *k*-meshes with a grid spacing of $2\pi \times 0.03$ Å⁻¹ are selected to meet the energy convergence.⁷ The electron-ion interaction is described by the projector augmented-wave method (PAW)⁸ with $1s^22s^1$ and $5s^25p^3$ valence electrons for Li and Sb, respectively. The dynamic stability was confirmed by phonon dispersion curves calculated with the PHONOPY code.9

To further test the reliability of the adopted pseudopotentials for Li and Sb, the validity of the projector augmented wave pseudopotentials from the VASP library are checked by comparing the calculated Birch-Murnaghan equation of state with those obtained using the full-potential linearized augmented plane-wave method (LAPW, as implemented in WIEN2k),¹⁰ which uses local orbitals. The Birch-Murnaghan equation of states derived from PAW and LAPW methods are almost identical. Thus, our adopted PAW potentials are reliable in the range of 0-300 GPa.

The *ab*-initio molecular dynamics (AIMD) simulations last 10 ps with a time step of 1 fs and are based on an NVT ensemble with Nosé-Hoover temperature control¹¹

The electron-phonon coupling (EPC) calculations are performed within PWscf (Plane-Wave Self-Consistent Field) package in QUANTUM ESPRESSO.¹² For high pressure phase, we employ ultrasoft pseudopotentials of li_pbe_v1.4.uspp.F.UPF and sb_pbe_v1.4.uspp.F.UPF. The C2/m Li₁₁Sb₂-II structure at 0 GPa is calculated by using Norm-conserving pseudopotentials of Li.pz-mt_fhi.UPF and Sb.pz-mt_fhi.UPF. The T_c is estimated from the McMillan-Allen-Dynes formula:^{13, 14}

$$T_{c} = \frac{\omega_{log}}{1.2} exp^{[10]} \left[-\frac{1.04(1 + \lambda)}{\lambda - \mu^{*}(1 + 0.62\lambda)} \right]$$

Herein, μ^* is the Coulomb pseudopotential and used to describe the interaction between electrons $(\mu^* = 0.1)$. In addition, the EPC constant, λ , and the logarithmic average phonon frequency, ω_{log} , are calculated with the Eliashberg spectral function for electron-phonon interaction:

$$\alpha^{2}F(\omega) = \frac{1}{N(E_{F})}\sum_{kq,\nu}|g_{k,k+q,\nu}|^{2}\delta(\varepsilon_{k})\delta(\varepsilon_{k+q})\delta(\omega-\omega_{q,\nu})$$
where
$$\lambda = 2\int d\omega \frac{\alpha^{2}F(\omega)}{\omega} ; \qquad \omega_{log} = exp\left[\frac{2}{\lambda}\int \frac{d\omega}{\omega}\alpha^{2}F(\omega)ln^{[m]}(\omega)\right].$$
Here, $N(E_{F})$ is the electronic

DOS at the E_F , $\omega_{q,v}$ is the phonon frequency of mode v and wave vector q, and $|g_{k, k+q, v}|$ is the electronphonon matrix element between two electronic states with momenta k and k + q at the E_F .

The work function (Φ) of a metal is calculated by considering a surface slab with a thickness of at least ten atoms. The vacuum distance is set to 20 Å, and a slab supercell is made with a, b > 10 Å. The Φ value is determined considering the difference between the vacuum potential and the Fermi level of the slab.¹⁵

Supporting Figures

Figure S1. Comparison of the fitted Birch-Murnaghan equation of states for Fm-3m Li₃Sb by using the calculated results with the PAW pseudopotentials and full-potential LAPW methods.

Figure S2. Phonon dispersion curves of Li-Sb compounds. (a) *Ibam* Li₅Sb₂ at 300 GPa, (b) *Fm*-3*m* Li₃Sb at 50 GPa, (c) *P*-3*m*1 Li₇Sb₂ at 300 GPa, (d) *R*-3*m* Li₄Sb at 100 GPa, (e) *P*6/*mmm* Li₅Sb at 50 GPa, (f) *C*2/*m* Li₁₁Sb₂ at 300 GPa, (g) *P*-1 Li₇Sb at 100 GPa, (h) *P*2₁/*m* Li₇Sb at 300 GPa, (i) *P*-1 Li₉Sb at 300 GPa, (j) *I*-4 Li₁₀Sb at 50 GPa, and (k) *C*2/*m* Li₁₀Sb at 100 GPa. The calculated phonon dispersion curves show no imaginary modes in the whole Brillouin zone, indicating that all the predicted phases are dynamically stable.

Figure S3. Crystal structures of (a) *Ibam* Li₅Sb₂, (b) *Fm*-3*m* Li₃Sb, (c) *P*-3*m*1 Li₇Sb₂, (d) *R*-3*m* Li₄Sb, (e) *P*6/*mmm* Li₅Sb, (f) *C*2/*m* Li₁₁Sb₂, (g) *P*-1 Li₇Sb, (h) *P*2₁/*m* Li₇Sb, (i) *P*-1 Li₉Sb, (j) *I*-4 Li₁₀Sb, and (k) *C*2/*m* Li₁₀Sb.

Figure S4. The ELF maps of (a) *Ibam* Li_5Sb_2 , (b) *Fm*-3*m* Li_3Sb , (c) *P*-3*m*1 Li_7Sb_2 , and (d) *R*-3*m* Li_4Sb . The absence of electron localization in their lattice interstitials indicates that they are not electrides.

Figure S5. The ELF maps of (a) P6/mmm Li₅Sb, (b) C2/m Li₁₁Sb₂, (c) P-1 Li₇Sb, (d) $P2_1/m$ Li₇Sb, (e) P-1 Li₉Sb, (f) *I*-4 Li₁₀Sb, and (g) C2/m Li₁₀Sb. The presence of obvious electron localization in their lattice interstitials indicates that they are electrides.

Figure S6. Phonon dispersion curves of (a) C2/m Li₁₁Sb₂, (b) P6/mmm Li₅Sb, (c) P-1 Li₇Sb, (d) P-1 Li₉Sb, and (e) I-4 Li₁₀Sb at 0 GPa.

Figure S7. The formation enthalpies (ΔH) of C2/m-II Li₁₁Sb₂ along different synthetic paths at 0 GPa. The largest ΔH is 42.7 meV/atom with Li₃Sb and Li as reactants, suggesting that C2/m-II Li₁₁Sb₂ satisfies the criterion of metastable compound (<50 meV/atom).

Figure S8. The side view of layered (a) C2/m-I and (b) C2/m-II. Li and Sb atoms are represented by green and blue spheres, respectively. The rotated Li₄ rings are highlighted with red.

Figure S9. Enthalpy (*H*), internal energy (*U*), and the *PV* term as a function of pressure for these two phases of $C2/m \operatorname{Li}_{11}\operatorname{Sb}_2$. The right is the enlarged diagram of the red frame in the left.

Figure S10. The change of IAEs during depressurization of C2/m Li₁₁Sb₂. With depressurizing, IAE1 and IAE2 gradually increase, IAE2 and Sb atom are separated from each other, and a small amount of electrons detach from Sb atoms (circled with dashed lines).

Figure S11. Total energy as a function of MD time for C2/m-I Li₁₁Sb₂ at 25 GPa and 500 K. The insets show the snapshots before (C2/m-I phase) and after (C2/m-II phase) a 10 ps AIMD simulation. The rotated Li₄ rings are highlighted with red.

Figure S12. (a) The constructed hydrogenated model by inserting a hydrogen atom into the IAE1 site. (b) Projected electronic bands structure of hydrogenated model for C2/m-I Li₁₁Sb₂. It is noted that the isolated IAE1 hardly contributes to the band crossing the E_F after inserting a hydrogen atom into the IAE1 site.

Figure S13. Projected electronic bands and density of states (DOS) of hydrogenated model for C2/m-II Li₁₁Sb₂.

Figure S14. (a) The phonon dispersion curves with λ weights of *C*2/*m*-I Li₁₁Sb₂ at 300 GPa. PHDOS, Eliashberg spectral function $\alpha^2 F(\omega)$, and frequency-dependent EPC parameters $\lambda(\omega)$ of *C*2/*m*-I Li₁₁Sb₂ at (b) 300 GPa, (c) 200 GPa, (d) 100 GPa.

Figure S15. The three vibrational modes with the largest contribution to total λ in *C*2/*m*-II Li₁₁Sb₂ marked in the main text. *A*-1 modes at (a) 0.74 THz and (b) 0.77 THz, (c) *A*-2 mode at 0.89 THz. The largest vibrational vectors, associated with the Li atoms around the Li₄ rings highlighted with red, are approximately parallel to the Li-Sb sublayer along a unique zigzag-like channel (represented by shadows).

Figure S16. The Fermi surface nesting function ξ (Q) of *C*2/*m*-II Li₁₁Sb₂ with IAEs and without IAEs at 0 GPa.

Figure S17. The electronic band structures and density of states (DOS) of electrides. (a) P6/mmm Li₅Sb at 50 GPa, (b) P-1 Li₇Sb at 100 GPa, (c) $P2_1/m$ Li₇Sb at 300 GPa, (d) P-1 Li₉Sb at 300 GPa, and (e) I-4 Li₁₀Sb at 50 GPa.

Figure S18. The work function of C2/m-II Li₁₁Sb₂ in (a) (001), (b) (100), and (c) (010) planes at 0 GPa. The Fermi level is set to zero.

Supporting Tables

Table S1. Bader charge analysis of Li-Sb electrides. The negative and positive values represent losing and gaining electrons in per formula unit, respectively.

Phase	Pressure (GPa)	Li	Sb	IAEs
P6/mmm Li ₅ Sb	50	-3.68 e⁻	2.73 e⁻	0.95 e⁻
$C2/m \operatorname{Li}_{11}\operatorname{Sb}_2$	300	-6.44 e ⁻	5.62 e-	0.82 e ⁻
P-1 Li ₇ Sb	100	-4.79 e⁻	2.99 e ⁻	1.80 e ⁻
$P2_1/m$ Li ₇ Sb	300	-4.20 e⁻	2.83 e ⁻	1.38 e ⁻
P-1 Li ₉ Sb	300	-5.38 e ⁻	3.76 e ⁻	1.62 e ⁻
<i>I</i> -4 Li ₁₀ Sb	50	-7.07 e⁻	3.11 e ⁻	3.96 e⁻
$C2/m \operatorname{Li}_{10}Sb$	100	-6.80 e ⁻	3.28 e ⁻	3.52 e⁻

Table S2. The superconducting parameters and the contributions of different-frequencies phonons to λ of Li₁₁Sb₂ at different pressures. LF and MHF represent Sb-dominated low frequency vibrations and Li-dominated medium-high frequency vibrations (unit: THz), respectively.

Pressure (GPa)	$T_{\rm c}({\rm K})$	$\omega_{\log}(\mathbf{K})$	λ	LF (Sb)	$\lambda(Sb\%)$	MHF (Li)	λ(Li%)
300	9.4	429.37	0.59	0-8.7	50.8%	8.7-41.7	49.2%
200	3.1	466.38	0.44	0-7.8	40.5%	7.8-36.6	59.5%
100	3.4	338.80	0.47	0-6.6	48.8%	6.6-29.0	51.2%
0	1.5	117.64	0.50	0-3.1	55.0%	3.1-13.1	45.0%

Phase	Pressure (GPa)	$T_{\rm c}({\rm K})$	$\omega_{\log}(K)$	λ
P6/mmm Li ₅ Sb	50	0.0	452.14	0.15
$P2_1/m$ Li ₇ Sb	300	1.0	604.15	0.35
P-1 Li ₉ Sb	300	0.0	560.65	0.19
<i>I</i> -4 Li ₁₀ Sb	50	1.7	328.01	0.42
$C2/m \operatorname{Li}_{10}Sb$	100	9.2	189.22	0.81

Table S3. The superconducting parameters of metallic Li-Sb electrides.

Table S4. Structural information of stable Li-Sb compounds.

Phase	Pressure (GPa)	Lattice Parameters (Å)	Wyckoff Positions (fractional)			
			Atoms	x	У	Ζ
		<i>a</i> = 4.5089	Li (8g)	-0.00000	0.26851	0.25000
Ib and Li Sh	200	<i>b</i> = 8.7301	Li (8j)	0.25891	0.86765	0.50000
<i>Ibam</i> L1 ₅ Sb ₂	300	<i>c</i> = 4.3295	Li (4b)	0.50000	-0.00000	0.25000
		$\alpha = \beta = \gamma = 90^{\circ}$	Sb (8j)	0.80064	0.10796	-0.00000
	50	<i>a</i> = 5.4678	\mathbf{L}	0.25000	0.75000	0.75000
		<i>b</i> = 5.4678	L1(8C)	0.23000	0.75000	0.75000
<i>FM-3M</i> L1 ₃ S0		<i>c</i> = 5.4678	LI (4a)	0.00000	0.00000	0.00000
		$\alpha = \beta = \gamma = 90^{\circ}$	Sb (4b)	0.50000	0.00000	0.00000
P-3m1 Li ₇ Sb ₂	300	<i>a</i> = 3.1800	Li (2c)	0.00000	0.00000	0.85965
		<i>b</i> = 3.1800	Li (2d)	0.33333	0.66667	0.60578
		<i>c</i> = 5.7561	Li (2d)	0.33333	0.66667	0.92435
		$\alpha = \beta = 90^{\circ}$	Li (1b)	0.00000	0.00000	0.50000
		γ=120°	Sb (2d)	0.66667	0.33333	0.73452

		<i>a</i> = 3.5893				
		<i>b</i> = 3.5893	Li (6c)	0.00000	0.00000	0.09090
R-3 m Li ₄ Sb	100	<i>c</i> = 10.6211	Li (6c)	0.00000	-0.00000	0.28792
		$\alpha = \beta = 90^{\circ}$	Sb (3b)	0.00000	-0.00000	0.50000
		γ=120°				
		<i>a</i> = 3.7628				
		<i>b</i> = 3.7628	Li (4h)	0.33333	0.66667	0.24592
P6/mmm Li ₅ Sb	50	<i>c</i> = 4.6632	Li (1a)	0.00000	0.00000	0.00000
		$\alpha = \beta = 90^{\circ}$	Sb (1b)	0.00000	0.00000	0.50000
		γ=120°				
			Li (4i)	0.21602	0.50000	0.53246
	300	<i>a</i> = 6.6555	Li (4i)	0.07419	0.50000	0.92159
		<i>b</i> = 3.0885	Li (4i)	0.98095	0.50000	0.33718
$C2/m \operatorname{Li}_{11}\operatorname{Sb}_2$		<i>c</i> = 6.7011	Li (4i)	0.15124	-0.00000	0.02863
		$\alpha = \gamma = 90^{\circ}$	Li (4i)	0.06568	-0.00000	0.24110
		$\beta = 107.1945^{\circ}$	Li (2c)	-0.00000	0.00000	0.50000
			Sb (4i)	0.23897	-0.00000	0.76067
			Li (2i)	0.90333	0.44328	0.26569
		<i>a</i> = 4.0345	Li (2i)	0.20709	0.99024	0.62022
		<i>b</i> = 5.6070	Li (2i)	0.36878	0.57263	0.08990
P-1 Li ₇ Sb	100	<i>c</i> = 5.6587	Li (2i)	0.99966	0.22588	0.07084
	100	$\alpha = 67.7269^{\circ}$	Li (2i)	0.57108	0.77416	0.70745
		$\beta = 100.9708^{\circ}$	Li (2i)	0.34229	0.12494	0.92753
		$\gamma = 98.8763^{\circ}$	Li (2i)	0.29176	0.38883	0.53917
			Sb (2i)	0.21843	0.81348	0.31646
	300	<i>a</i> = 5.4966	Li (4f)	0.71110	0.04274	0.84838
D /m I : Cl-		<i>b</i> = 3.6466	Li (4f)	0.95823	0.94242	0.79890
$P2_{1}/m$ L1 ₇ Sb		<i>c</i> = 3.9591	Li (2e)	0.39983	0.25000	0.95166
		$\alpha = \gamma = 90^{\circ}$	Li (2e)	0.40575	0.25000	0.52355

		$\beta = 106.2418^{\circ}$	Li (2e)	0.09663	0.25000	0.66303
			Sb (2e)	0.71577	0.25000	0.34925
		<i>a</i> = 3.3455	Li (2i)	0.50145	0.86559	0.24813
	300	<i>b</i> = 3.9021	Li (2i)	0.86109	0.82366	0.42030
		<i>c</i> = 3.9068	Li (2i)	0.44805	0.69400	0.70940
F-1 L1950		$\alpha = 114.7651^{\circ}$	Li (2i)	0.77290	0.44916	0.87310
		$\beta = 94.9633^{\circ}$	Li (1g)	0.00000	0.50000	0.50000
		$\gamma = 93.2688^{\circ}$	Sb (1a)	0.00000	0.00000	0.00000
	50	<i>a</i> = 4.3190	Li (8g)	0.24282	0.53371	0.91692
		<i>b</i> = 4.3190	Li (8g)	0.31849	0.64718	0.71970
<i>I</i> -4 L1 ₁₀ SD		<i>c</i> = 10.3808	Li (4f)	0.00000	0.50000	0.11728
		$\alpha = \beta = \gamma = 90^{\circ}$	Sb (2a)	0.00000	0.00000	0.00000
		10 5025	Li (4i)	0.22190	-0.00000	0.61368
	100	a = 10.3023	Li (4i)	0.90346	-0.00000	0.58217
Colum Li Sh		b = 3.0232	Li (4i)	0.77259	-0.00000	0.99942
C2/m L1 ₁₀ Sb		c = 4.2427	Li (4i)	0.07246	0.50000	0.24763
		$\alpha = \gamma = 90^{\circ}$	Li (4i)	0.12089	0.50000	0.73105
		$p = /0.9186^{\circ}$	Sb (2a)	0.00000	0.00000	0.00000

References

- 1. Y. Wang, J. Lv, L. Zhu and Y. Ma, *Phys. Rev. B*, 2010, **82**, 094116.
- 2. Y. Wang, J. Lv, L. Zhu and Y. Ma, Comput. Phys. Commun., 2012, 183, 2063-2070.
- 3. G. Kresse and J. Furthmüller, *Phys. Rev. B*, 1996, **54**, 11169-11186.
- 4. P. Hohenberg and W. Kohn, *Phys. Rev.*, 1964, **136**, B864-B871.
- 5. W. Kohn and L. J. Sham, *Phys. Rev.*, 1965, **140**, A1133-A1138.
- J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais, *Phys. Rev. B*, 1992, 46, 6671-6687.
- 7. H. J. Monkhorst and J. D. Pack, *Phys. Rev. B*, 1976, **13**, 5188-5192.
- 8. P. E. Blöchl, *Phys. Rev. B*, 1994, **50**, 17953-17979.
- 9. A. Togo, F. Oba and I. Tanaka, *Phys. Rev. B*, 2008, **78**, 134106.
- 10. P. Blaha, K. Schwarz, P. Sorantin and S. B. Trickey, *Comput. Phys. Commun.*, 1990, **59**, 399-415.
- 11. G. Kresse and J. Hafner, *Phys. Rev. B*, 1993, 47, 558-561.
- 12. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L.

Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari and R. M. Wentzcovitch, *J. Phys. Condens. Matter*, 2009, **21**, 395502.

- 13. P. B. Allen and R. C. Dynes, *Phys. Rev. B*, 1975, **12**, 905-922.
- 14. R. C. Dynes, Solid State Commun., 1972, 10, 615-618.
- 15. M. A. Uijttewaal, G. A. d. Wijs and R. A. d. Groot, J. Appl. Phys., 2004, 96, 1751-1753.