Supporting Information

Broadband self-powered photodetector based on NiPS₃

Linghao Zong^{1, †}, Jiaming Song^{1, 3, 4, †, *}, Shuxian Wang¹, Wenhui Chen¹, Juanjuan Yang¹, Bingda Li¹, Peng Hu¹, Haibo Fan¹, Feng Teng¹, Xin Zhao²

- 1. School of Physics, Northwest University, Xi'an 710127, China
- School of Optoelectronic Engineering, Xi'an Technological University, Xi'an 710021, China
- 3. Carbon Neutrality College (Yulin), Northwest University, China
- 4. Shaanxi Key Laboratory for Carbon Neutral Technology, China
- †: These authors contributed equally
- *: Corresponding author: jiaming.song@nwu.edu.cn

Fig. S1 White light interferometer measurement of a $NiPS_3$ flake. The inset shows the optical image of the flake before transferring onto the gold electrodes.

According to the measurement by white light interferometer, the thickness for the $NiPS_3$ thin film of the device was 180 nm.

Fig. S2 (a) Zoomed-in I-V curves of Fig. 3b under 365, 425, 515, 635, 700, and 780 nm wavelength light irradiation. (b) I-t curves for 254 nm, 880 nm and 1020 nm wavelengths at -5 V bias.

Fig. S3 The on/off photoelectric response of a NiPS₃-based MSM photodetector with asymmetric electrode contacts at 0 V (a) and -5 V (b) bias voltages under 515 nm illumination at different power densities.

Fig. S4 (a) I-V curves of a symmetrical device under illumination of different light wavelengths. The inset shows a schematic device structure. (b) Zero-bias I-t curves of the symmetric device at different wavelengths.

Fig. S5 Measured Mott-Schottky curve of NiPS₃.

The positive slope of the Mott-Schottky curve for $NiPS_3$ indicates an n-type semiconductor behavior.

Fig. S6 UPS measurement of NiPS₃.

Fig. S7 the UV-vis DRS of NiPS₃. The inset shows the tauc plot of the spectrum. The energy band gap (E_g) can be estimated using the conventional Tauc equation:

$$\alpha h \nu = A (h \nu - E_g)^{\frac{n}{2}} \tag{1}$$

where α is the absorption coefficient, hv is the photon energy, A is the constant, and n = 4 for an indirectly allowed transition. According to Fig. S7, the optical band gap of NiPS₃ is 1.12 eV.

Fig. S8 I-t curves (a) and the corresponding calculated responsivity and detectivity (b) for a NiPS₃-based MSM photodetector with asymmetric electrode contacts at different bias voltages under 425 nm wavelength illumination.

Photodetector	λ (nm)	Bias (V)	R (mA/W)	D* (Jones)	I _{photo} /I _{dark}	rise/decay time (ms)	Ref.
$Ba_2Bi_{1.5}Nb_{0.5}O_6$	365~760	0	0.078	1.13 × 10 ⁸	-	-	1
Ga ₂ O ₃	254	0	0.149	3.1×10 ⁹	-	75.9/45.1	2
CsPbBr ₃	355,500	0	0.24	-	-	6.8×10 ⁻⁴ /0.43	3
Cs_2SnI_6	white light	0	1.07	6.03 × 10 ¹⁰	-	-	4
PEDOT:PSS/α-Ga ₂ O ₃	245,540	0	1.43	-	-	-/537	5
ZnO NRs/PbS/RGO	350~700	0	250	8.3×10 ⁴	-	65/74	6
AgIn ₅ Se ₈ /FePSe ₃	365~1020	0	3.8×10-3	5.7×10 ⁸	350	20/20	7
NiO/Ga ₂ O ₃	254	0	5.7 × 10 ⁻²	5.45×10 ⁹	122	340/3.7×10 ³	8
NiPS ₃	365~780	0	2.3	6.2 × 10 ⁹	40	<40/<40	This work

Table S1 Photoelectric response comparison of self-powered photodetectors

References

1 Z. Y. Dai, C. Chen, G. S. Wang, Y. N. Lyu and N. Ma, J. Mater. Chem. C, 2023, 11, 574-582.

- 2 K. Gu, Z. Zhang, H. Huang, K. Tang, J. Huang, M. Liao and L. Wang, J. Mater. Chem. C, 2023, 11, 5371-5377.
- 3 W. Gong, Y. Tian, J. Yan, F. Gao and L. Li, J. Mater. Chem. C, 2022, 10, 7460-7468.
- 4 J. Huang, C. Dong, Y. Mei, X. Lu, G. Yue, Y. Gao, R. Liu, W. Zhang and F. Tan, J. Mater. Chem. C, 2021, 9, 14217-14225.
- 5 M.-M. Fan, K.-L. Xu, X.-Y. Li, G.-H. He and L. Cao, J. Mater. Chem. C, 2021, 9, 16459-16467.
- 6 N. Deka, P. Chakraborty, D. Chandra Patra, S. Dhar and S. P. Mondal, *Mat. Sci. Semicon. Proc.*, 2020, 118, 105165.
- 7 Q. Lu, L. Xu, Y. Ren, J. Gao, Y. Chen, J. Song, H. Fan, F. Teng, X. He and P. Hu, *ACS Appl. Electron. Mater.*, 2022, 4, 5284-5291.
- 8 Y. Wang, C. Wu, D. Guo, P. Li, S. Wang, A. Liu, C. Li, F. Wu and W. Tang, ACS Appl. Electron. Mater., 2020, 2, 2032-2038."