Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supplementary Information (SI)

In₂Si₂S₃X₃ (X = S, Se, Te) Janus Monolayers: From Magnetic Element-Free Spin-Hall Transistor to Sustainable Energy Generation

Manish Kumar Mohanta* and Puru Jena[†]

Department of Physics, Virginia Commonwealth University, Richmond, VA 23284, USA E-mail: *manishkmr484@gmail.com, mohantamk@vcu.edu, †pjena@vcu.edu

Figure S1 (a) Phonon dispersion spectra of monolayers and (b) snapshot of geometries after 3ps in ab initio molecular dynamics simulation (AIMD) at 300 K.

Figure S2 Projected density of states (PDOS) of monolayers near Fermi energy (set to zero).

Figure S3: Te_pz orbital projected band structure of Janus In₂Si₂S₃Te₃ monolayer.

Figure S4: In-plane spin projected band structure of pristine $In_2Si_2S_6$ and $In_2Si_2S_3Se_3$ monolayer.

Figure S5: Gibbs free energy profile for HER and OER of pristine $In_2Si_2S_6$ monolayer

Table S1 Calculated elastic constants of monolayers					
Monolayers	$C_{11(N/m)}$	$C_{12 (N/m)}$	Young's modulus		
		(rum)	Y(N/m)		
$In_2Si_2S_6$	73.067	22.630	66.059		
In ₂ Si ₂ S ₃ Se ₃	67.916	21.041	61.397		
In ₂ Si ₂ S ₃ Te ₃	58.283	20.324	51.196		
*CuInP ₂ S ₆	62.141	18.077	56.882		
*Experimentally synthesized ^{1–3}					

Thermodynamics for oxygen evolution reaction:

The mechanism of OER is assumed to proceed through -OH, -O and -OOH intermediates. The Gibbs free energy of each elementary step is as follows:⁴

$$\Delta G_0 = E_{slab, 0} - E_{slab} - (E_{H_20} - E_{H_2})$$

$$\Delta G_{0H} = E_{slab, 0H} - E_{slab} - (E_{H_20} - \frac{1}{2}E_{H_2})$$

$$\Delta G_{00H} = E_{slab, 00H} - E_{slab} - (2E_{H_20} - \frac{3}{2}E_{H_2})$$

Table S2 Equations for calculating the free energies $\Delta G_1 - \Delta G_4$ and overpotentials (η) for the HER and OER				
	ΔG	η		
HER	$\Delta G_{H} = E_{*H} - E_{*} - \frac{1}{2}E_{H_{2}}$	$\eta^{HER} = -\frac{\left \Delta G_{H^*}\right }{e}$		
OER	$\Delta G_1 = \Delta G_{OH}$ $\Delta G_2 = \Delta G_O - \Delta G_{OH}$ $\Delta G_3 = \Delta G_{OOH} - \Delta G_O$	$\eta^{OER} = \frac{max^{10} \{\Delta G_1, \Delta G_2, \Delta G_3, \Delta G_4\}}{e} - $		
	$\Delta G_A = 4.92 eV - \Delta G_1 - \Delta G_2 - \Delta G_3$			

Table S3 Calculated DFT total energy E_{DFT} for gases and adsorbates in the HER and OER process for pristine $In_2Si_2S_6$ monolayer

Adsorbates	$E_{DFT} (eV)$	ΔG (eV)
H ₂	-6.77	$\Delta G_1 = 2.53$
H ₂ O	-14.22	$\Delta G_2 = -0.086$
*	-190.8004	$\Delta G_3 = 2.83$
*OH	-199.104	$\Delta G_4 = -0.35$
*O	-195.807	$\Delta G_{H} = 1.17$
*OOH	-203.81	

*H	-193.0159	
----	-----------	--

Table S4 Calculated DFT total energy E _{DFT} for gases and adsorbates in the HER and OER				
process for Janus $In_2Si_2S_3Se_3$ monolayer				
Adsorbates	E _{DFT} (eV)	ΔG (eV)		
	Se-side			
H ₂	-6.77	$\Delta G_1 = 2.37$		
H ₂ O	-14.22	$\Delta G_2 = 0.673$		
*	-181.72	$\Delta G_3 = 2.25$		
*0	-186.12	$\Delta G_{A} = -0.37$		
*ОН	-190.18	$\Delta G_{\mu} = 1.29$		
*OOH	-194.69	11		
*H	-183.82			
S-side				
*	-181.72	$\Delta G_1 = 2.42$		
*0	-186.76	$\Delta G_2 = -0.01$		
*ОН	-190.13	$\Delta G_3 = 2.95$		
*OOH	-194.65	$\Delta G_{4} = -0.44$		
*H	-183.97	$\Delta G_{H} = 1.14$		

References:

- 1 X. Jiang, X. Wang, X. Wang, X. Zhang, R. Niu, J. Deng, S. Xu, Y. Lun, Y. Liu, T. Xia, J. Lu and J. Hong, *Nature Communications*, 2022, **13**, 574.
- 2 J. Yao, Y. Liu, S. Ding, Y. Zhu, Z. Mao, S. V. Kalinin and Y. Liu, *arXiv preprint* arXiv:2309.10045.
- 3 F. Liu, L. You, K. L. Seyler, X. Li, P. Yu, J. Lin, X. Wang, J. Zhou, H. Wang, H. He, S. T. Pantelides, W. Zhou, P. Sharma, X. Xu, P. M. Ajayan, J. Wang and Z. Liu, *Nature Communications*, 2016, 7, 12357.
- 4Z. Xu, J. Rossmeisl and J. R. Kitchin, J. Phys. Chem. C, 2015, 119, 4827-4833.