Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

## **Supporting Information for**

## Two dimensional Cr<sub>2</sub>GaX<sub>4</sub> (X = S, Se, Te): Half-Metallic Intrinsic

## **Room Temperature Ferromagnets with Large Magnetic Anisotropy**

Sai Ma,<sup>1,\*</sup> Xiangyan Bo,<sup>1,\*</sup> Xiaoyu Liu,<sup>1</sup> Suen Wang,<sup>1</sup> Mengxian Lan,<sup>1</sup> Shasha Li,<sup>1,†</sup> Feng Li,<sup>1,†</sup> and Yong Pu<sup>1,†</sup>

<sup>1</sup> School of Science & New Energy Technology Engineering Laboratory of Jiangsu Province, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210046, China

Corresponding Authors: shashali@njupt.edu.cn; lifeng@njupt.edu.cn; puyong@njupt.edu.cn



Figure S1: Total energy as a function of lattice constants in the ferromagnetic configurations of (a) Cr<sub>2</sub>GaS<sub>4</sub>, (b) Cr<sub>2</sub>GaSe<sub>4</sub>, and (c) Cr<sub>2</sub>GaTe<sub>4</sub> monolayers.



Figure S2: The phase diagram of a ternary (a) Cr-Ga-S, (b) Cr-Ga-Se, and (c) Cr-Ga-Te system.

Table S1: The optimized lattice constants (*L*, Å), the Cr-Ga bond lengths ( $d_1$ , Å), the Cr-X bond lengths ( $d_2$ , Å), the Cr-Ga-Cr bond angles ( $\theta_1$ ), the Cr-X-Cr bond angles ( $\theta_2$ ), and the stiffness constants (*C*, N/m).

|                                   | L    | $d_1$ | $d_2$ | $	heta_1$ | $	heta_2$ | $C_{11}$ | $C_{12}$ | $C_{66}$ |
|-----------------------------------|------|-------|-------|-----------|-----------|----------|----------|----------|
| Cr <sub>2</sub> GaS <sub>4</sub>  | 6.10 | 3.05  | 2.40  | 90        | 128.26    | 13.39    | -0.328   | 6.608    |
| Cr <sub>2</sub> GaSe <sub>4</sub> | 6.36 | 3.19  | 2.53  | 90        | 125.63    | 6.509    | 0.772    | 5.931    |
| Cr <sub>2</sub> GaTe <sub>4</sub> | 6.69 | 3.35  | 2.73  | 90        | 120.24    | 3.761    | -1.35    | 6.115    |



Figure S3: The evolution of total energy of the  $Cr_2GaX_4$  (X = S, Se, Te) monolayers as a function of time at 300 K.

Table S2: Test calculation results of the band gaps (eV) on the spin-down channel and MAE (meV/Cr) of  $Cr_2GaX_4$  (X = S, Se, Te) monolayers whether the van der Waals corrections are adopted with the density functional dispersion correction (DFT-D3).

| $Cr_2GaS_4$                       | band gap | MAE  |  |
|-----------------------------------|----------|------|--|
| without vdW                       | 3.60     | 0.28 |  |
| with vdW                          | 3.69     | 0.29 |  |
|                                   |          |      |  |
| Cr <sub>2</sub> GaSe <sub>4</sub> | band gap | MAE  |  |
| without vdW                       | 3.21     | 0.55 |  |
| with vdW                          | 3.20     | 0.58 |  |
|                                   |          |      |  |
| Cr <sub>2</sub> GaTe <sub>4</sub> | band gap | MAE  |  |
| without vdW                       | 2.37     | 3.45 |  |
| with vdW                          | 2.35     | 3.47 |  |



Figure S4: The electronic band structures of the  $Cr_2GaX_4(X = S, Se, Te)$  monolayers for which the van der Waals corrections are adopted with DFT-D3.

| $Cr_2GaS_4$                       | band gap | MAE  |
|-----------------------------------|----------|------|
| U = 3.0  eV                       | 3.60     | 0.28 |
| U = 3.5  eV                       | 3.96     | 0.28 |
| U = 4.0  eV                       | 4.01     | 0.27 |
|                                   |          |      |
| Cr <sub>2</sub> GaSe <sub>4</sub> | band gap | MAE  |
| U = 3.0  eV                       | 3.21     | 0.55 |
| U = 3.5  eV                       | 3.25     | 0.52 |
| U = 4.0  eV                       | 3.28     | 0.54 |
|                                   |          |      |
| Cr <sub>2</sub> GaTe <sub>4</sub> | band gap | MAE  |
| U = 3.0  eV                       | 2.37     | 3.45 |
| U = 3.5  eV                       | 2.38     | 3.42 |
| U = 4.0  eV                       | 2.38     | 3.28 |

Table S3: Test calculation results of the band gaps (eV) on the spin-down channel and MAE (meV/Cr) of  $Cr_2GaX_4$  (X = S, Se, Te) monolayers with the different values of Hubbard U.



Figure S5: The electronic band structures of the  $Cr_2GaX_4$  (X = S, Se, Te) monolayers, which the values of Hubbard U are set to (a-c) 3.5 and (d-f) 4.0 eV.



Figure S6: The  $Cr_2GaX_4$  (X = S, Se, Te) bilayers with AA, AB-I, and AB-II stacking. (a-c) Top and (d-f) side views of the optimized structures.

| $Cr_2GaS_4$                       | L    | d    |  |
|-----------------------------------|------|------|--|
| AA                                | 6.08 | 3.63 |  |
| AB-I                              | 6.08 | 3.58 |  |
| AB-II                             | 6.08 | 3.66 |  |
|                                   |      |      |  |
| Cr <sub>2</sub> GaSe <sub>4</sub> | L    | d    |  |
| AA                                | 6.33 | 3.74 |  |
| AB-I                              | 6.33 | 3.66 |  |
| AB-II                             | 6.34 | 3.76 |  |
|                                   |      |      |  |
| Cr <sub>2</sub> GaTe <sub>4</sub> | L    | d    |  |
| AA                                | 6.72 | 3.99 |  |
| AB-I                              | 6.69 | 3.82 |  |
| AB-II                             | 6.69 | 3.90 |  |

Table S4: The optimized lattice constants (L, Å) and layer distances (d, Å) of the Cr<sub>2</sub>GaX<sub>4</sub> (X = S, Se, Te) bilayers.



Figure S7: Top view of spin charge density for  $Cr_2GaX_4$  (X = S, Se, Te) with iso-surface values of 0.002 e bohr<sup>-3</sup>. The yellow and cyan colors represent spin-up and spin-down charge accumulation, respectively.

Table S5: The charge transfer (Q, e) by the Bader charge analysis. The negative and positive represent the gain and loss of electrons, respectively.

|                                   | $Q_{ m Cr}$ | $Q_{ m Ga}$ | $Q_{\mathrm{X}}$ |
|-----------------------------------|-------------|-------------|------------------|
| $Cr_2GaS_4$                       | 1.41        | 0.90        | -1.02            |
| Cr <sub>2</sub> GaSe <sub>4</sub> | 1.11        | 1.31        | -0.77            |
| Cr <sub>2</sub> GaTe <sub>4</sub> | 0.87        | 0.58        | -0.58            |



Figure S8: Partial density of electron state (PDOS) of Cr and Se atoms in Cr<sub>2</sub>GaSe<sub>4</sub> monolayer. Spin-up and spin-down channels are from left to right. The smaller PDOS are multiplied by appropriate times to gain clear discrimination.