The interplay of intersystem crossing and internal conversion in quadrupolar tetraarylpyrrolo[3,2-b]pyrroles

Krzysztof Górski, ${ }^{\text {a }}$ Damian Kusy, ${ }^{\text {a }}$ Shuhei Ozaki, ${ }^{\text {b,c }}$ Marzena Banasiewicz, ${ }^{\text {d }}$ Rashid Valiev, ${ }^{\text {e }}$ Smruti Ranjan Sahoo, ${ }^{\text {f }}$ Kenji Kamada, ${ }^{* b, c}$ Glib Baryshnikov, ${ }^{\text {ff }}$ Daniel T. Gryko*a

[^0]
Table of Content

1. Synthesis, analytical and spectral data ... 1
2. Two-photon absorption measurment... 8
3. Computational Methodology ... 12
4. References... 17

1. Synthesis, analytical and spectral data

Experimental:

All chemicals were used as received unless otherwise noted. All used for reaction solvents were pure for analysis grade and were taken without further purification. 4-Nitro-1H-pyrrole-2-carboxaldehyde and 5-Nitro-1H-pyrrole-2-carboxaldehyde was synthesized according to literature procedure ${ }^{[1]}$ while 5-Nitro-3thiophenecarboxaldehyde was bought from Apollo Scientific, 5-Nitropicolinaldehyde from Aldrich and 3,5-di- \boldsymbol{t}-butylaniline from TCI. All reactions requiring heating were carried out using an oil bath. All reported NMR spectra were recorded on a 500 MHz spectrometer. Chemical shifts ($\delta \mathrm{ppm}$) for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR were determined to solvent residual signal as the internal reference; J values are given in Hz . UV/Vis absorption spectra were recorded on a PerkinElmer Lambda 35 Spectrometer. Fluorescence spectra were recorded on a FLS1000 of Edinburgh Instruments. Absorption spectra were recorded in n-hexane, toluene, propyl butyrate, tetrahydrofurane, ethyl acetate n-octanol, n-butyl acetate, acetonitrile and methanol. In order to determine the fluorescence quantum yield Rh6G in $\mathrm{EtOH}, \mathrm{Rh} 101$ in MeOH and Coum153 in EtOH were used as a quantum yield standard. Chromatography was performed on silica (Kieselgel 60, 200-400 mesh). Mass spectra were obtained with EI ion source and the EBE double-focusing geometry mass analyzer or spectrometer equipped with electrospray ion source with q-TOF type mass analyzer.

General procedure for the synthesis of 1,4-dihydro-pyrrolo[3,2-b]pyrroles: ${ }^{[2]}$

In an open round-bottom flask, aldehyde (8 mmol) and 3,5-di- t-butylaniline (8 mmol) were dissolved in a mixture of 6 ml of toluene and 6 ml of acetic acid. The obtained yellow solution was heated up to $50^{\circ} \mathrm{C}$ (precipitate may appear). After 1 h in constant temperature butane-1,2-dione (4 mmol) and catalytic amount of iron(III) chlorate(VII) monohydrate $(3 \% \mathrm{~mol})$ were added. The mixture turns dark and after a while precipitate appears. After 24 hours of stirring at $50^{\circ} \mathrm{C}$ under open air, the solution was cooled and the formed precipitate was filtered off.

Scheme S1: Synthesis of 1,4-dihydro-pyrrolo[3,2-b]pyrroles and reaction yields
1 was obtained as grey-brown solid, yield $551 \mathrm{mg}(20 \%) .{ }^{1} \mathrm{H}$ NMR (500 MHz , d6-acetone) $\delta: 11.53(\mathrm{~s}, 2 \mathrm{H}), 7.55$ (t, J = $1.7 \mathrm{~Hz}, 2 \mathrm{H}$), $7.28(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.02(\mathrm{~d}, \mathrm{~J}=4.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~s}, 2 \mathrm{H})$, $5.74(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.34(\mathrm{~s}, 36 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , d6-acetone) $\delta: 152.3,138.4,132.8,131.3,127.4$, $120.9,120.0,112.0,110.1,94.7,34.7,30.7$. HRMS (EI): m/z calculated for $\mathrm{C}_{42} \mathrm{H}_{50} \mathrm{~N}_{6} \mathrm{O}_{4}: 702.3894$ [M^{+}]; found: 702.3899 .

2 was obtained as brick-red solid, yield $579 \mathrm{mg}(21 \%) .{ }^{1} \mathrm{H}$ NMR (500 MHz , d6-acetone) $\delta: 11.07(\mathrm{~s}, 1 \mathrm{H}), 7.77$ (dd, $\mathrm{J}=3.4,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{t}, \mathrm{J}=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 4 \mathrm{H}), 6.55(\mathrm{~s}, 2 \mathrm{H})$, $6.23(\mathrm{dd}, \mathrm{J}=2.7,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.34(\mathrm{~s}, 36 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , d6-acetone) $\delta: 152.0,138.5,137.5,131.0$, 126.6, 126.2, 120.4, 119.8, 119.5, 102.4, 93.6, 34.7, 30.7. HRMS (EI): m / z calculated for $\mathrm{C}_{42} \mathrm{H}_{50} \mathrm{~N}_{6} \mathrm{O}_{4}: 702.3894$ [M^{+}]; found: 702.3897.

3 was obtained as red solid, yield $290 \mathrm{mg}(41 \%)^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 9.31(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 2 \mathrm{H}$), $8.15(\mathrm{dd}, J=9.0,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~s}, 2 \mathrm{H}), 7.16(\mathrm{~s}, 4 \mathrm{H}), 6.99(\mathrm{~s}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.31(\mathrm{~s}, 36 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 156.2,152.9,145.5,141.0,138.7,137.2,136.2,130.6,121.2,120.7,120.4$, 99.3, 35.2, 31.5. HRMS (EI): m/z calculated for $\mathrm{C}_{44} \mathrm{H}_{50} \mathrm{~N}_{6} \mathrm{O}_{4}: 726.3894$ [M•+]; found: 726.3883 .

4 was obtained as orange solid, yield $1.73 \mathrm{~g}(59 \%) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta: 7.73(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.46$ $(\mathrm{s}, 2 \mathrm{H}), 7.18(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.99(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.42(\mathrm{~s}, 2 \mathrm{H}), 1.33(\mathrm{~s}, 36 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(126 \mathrm{MHz}$, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta: 153.0,151.7,138.5,134.5,131.8,130.1,128.7,126.8,121.2,120.4,94.3,35.3,31.4$. HRMS (EI): m/z calculated for $\mathrm{C}_{42} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$: 736.3117 [M^{+}]; found: 736.3123.

Fig. S1: $500 \mathrm{MHz}^{1}{ }^{1} \mathrm{H}$ NMR spectrum of 1 in d6-acetone

Fig. S2: $126 \mathrm{MHz}^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 1 in d6-acetone

Fig. S3: $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 2 in d6-acetone

Fig. S4: $126 \mathrm{MHz}^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 2 in d6-acetone

Fig. S5: $500 \mathrm{MHz}^{1} \mathrm{H}$ NMR spectrum of 3 in CDCl_{3}

Fig. S6: $126 \mathrm{MHz}^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 3 in CDCl_{3}

Fig. S7: $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 4 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Fig. S8: $126 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 4 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Fig. S9: Absorption (solid) and emission (dot) spectra of 2 (left) and 4 (right) in hexane (black), toluene (red), noctanol (purple), propyl butyrate (blue), tetrahydrofurane (pink), ethyl acetate (green), butyl acetate (gold), acetonitrile (cyan)

2. Two-photon absorption measurment

The open-aperture Z-scan method ${ }^{[3]}$ was employed for two-photon absorption (TPA) spectrum measurements. A femtosecond optical parametric amplifier (Spectra-Physics TOPAS Prime) was used as wavelength-tunable light source. The setup was reported previously in detail. ${ }^{[4]}$ Open-aperture Z-scan trace acquired was analyzed by the curve fitting with the following equation,
$T(\zeta)=T_{N} \frac{1}{\sqrt{\pi} q(\zeta)} \int_{-\infty}^{+\infty} \ln \left[1+q(\zeta) e^{-x^{2}}\right] d x . \#(E 1)$
Here $T(\zeta)$ is the transmittance of the sample as function of normalized sample position $\zeta=z / z_{R_{\text {with }}}$ the Rayleigh length Z_{R} for a two-photon absorber excited by spatially and temporally Gaussian pulses. $T_{N}=\exp (-\alpha L)$ is linear transmittance of the sample, α is linear absorption coefficient, and L is physical path length of the sample. $q(\zeta)$ is on-axis two-photon absorbance $q(\zeta)=q_{0} /\left(1+\zeta^{2}\right)$ with the on-axis two-photon absorbance at the sample position $q(0)=q_{0}$. This q_{0} is related with two-photon absorption coefficient β as,
$q_{0}=\beta I_{0} L \#(E 2)$
where I_{0} is the on-axis peak intensity of the incident Gaussian pulse. For the measurement performed by using a fixed incident power (i.e., a fixed I_{0}), β was calculated by assuming the proportionality relation of eq. S2. We call the measurement mode with a fixed incident power and repeating the measurement by changing the wavelength as "Wavelength(WL) Scan", which results in high throughput of the spectral measurement. However, the assumption that the no other mechanism rather than TPA contributes to the signal does not hold always. For example, excited state absorption (ESA) or three-photon absorption may also contribute to the signal (transmittance dip around the focal point). So, we also recorded the incident-power dependence (i.e., by changing I_{0}) at some wavelengths to check the proportionality shown by eq. S2. We call the second measurement mode is "Power Scan". In this case, β was determined from the slope of the plot of q_{0} against I_{0}.

Finally, TPA cross section $\sigma^{(2)}$ was obtained from β by using the convention $\sigma^{(2)}=h \nu \beta / N$, where $h v$ is photon energy of excitation pulse and N is number density of sample molecule calculated from the concentration. The unit of Göppert-Mayer (GM) was used for TPA cross section where $1 \mathrm{GM}=10^{-50} \mathrm{~cm}^{4}$ s photon ${ }^{-1}$ molecule ${ }^{-1}$.

For all compounds, $1-2 \mathrm{mM}$ solution in spectroscopic grade chloroform (Fuji Film-Wako) hold in 2-mm quartz cuvette was used for Z-scan measurement. The path length is short enough against $Z_{R}(9-11 \mathrm{~mm})$ to satisfy the thin sample condition ${ }^{[3]}$ for eq. S1. The sample solution was stirred during the measurement by a micro rotor put in the cell to avoid unwanted effect by the sample bleaching and photoproduct. No significant degradation was observed for both samples after Z-scan measurements, which is confirmed by UV-vis measurements. For calibration of day-by-day fluctuation of the measured values, inhouse standard materials were measured at the same time with the samples (MPPBT in dimethyl sulfoxide ${ }^{[5]}$).

At short wavelengths where the tail of linear absorption (one-photon absorption, OPA) exists, saturable absorption (SA) of OPA was overlaps on open-aperture Z-scan trace. For such cases, the traces were analyzed with eq. S1 by replacing ${ }^{\alpha}$ with phenomenological modeling of SA as
$\alpha \Rightarrow \alpha(I(\zeta))=\frac{\alpha_{0}}{\left(1+I(\zeta) / I_{s}\right)} \#(E 3)$
where I_{S} is saturation intensity and $I(\zeta)=I_{0} /\left(1+\zeta^{2}\right)$.[6]
Some examples of the acquired open-aperture Z-scan traces at typical wavelengths are shown in Figs. S10-S13. Example of the SA+TPA signal was shown in Fig. S14.

Fig. S10: (left) Open-aperture Z-scan traces of $\mathbf{1}$ in chloroform (2.0 mM) measured at 900 nm at different incident powers (symbols) with theoretical fits with eq. E1 (grey curves). (right) The corresponding plot of the two-photon absorbance q_{0} obtained from the curve fits against the incident power in the left panel.

Fig. S11: (left) Open-aperture Z-scan traces of $\mathbf{2}$ in chloroform (1.4 mM) measured at 800 nm (red circle) and neat solvent (grey diamond) as control.

Fig. S12: (left) Open-aperture Z-scan traces of $\mathbf{3}$ in chloroform $(0.93 \mathrm{mM})$ measured at 800 nm at different incident powers (symbols) with theoretical fits with eq. E1 (grey curves). (right) The corresponding plot of the two-photon absorbance q_{0} obtained from the curve fits against the incident power in the left panel.

Fig. S13: (left) Open-aperture Z-scan traces of $\mathbf{2}$ in chloroform (1.9 mM) measured at 800 nm (red circle) and neat solvent (gray diamond) as control.

Fig. S14: Example of the open-aperture Z-scan traces affected by saturable absorption of one-photon absorption. (left) $\mathbf{2}$ in chloroform (1.3 mM) and (right) $\mathbf{3}$ in chloroform (2.1 mM) both measured at 600 nm at different incident powers (symbols) with theoretical fits with eq. E1 with eq. E3.

Fig. S15: Two-photon absorption spectra of the quadrupolar dyes $\mathbf{1}$ and $\mathbf{3}$ (circles and triangles) in chloroform to bottom and left axes. The data points out of vertical range in Fig. 3 in the main text are also shown here. The data shown with triangle were affected by the saturable absorption (SA) and analysed by considering it. The filled symbols are the data measured with a single incident power (WL-scan), and the open symbols with error bars are those measured by varying the incident power (power scan). See Experimental for the details on the modes of measurements and the analysis of the mixed data of TPA and SA. The one-photon absorption (OPA) spectra (to right and bottom axes) of the same solutions in the same cells used for the Z-scan measurements are also shown with the area filled with pale orange.

Fig. S16: Simulated two-photon absorption spectra (blue curve) of the quadrupolar dyes 1-4. The geometry optimization and the property (transition energy and transition dipole moment) calculations were performed at the CAM-B3LYP/6-31+G(d). Up to 20 excited singlet states were considered. Solvent effect was considered by using the PCM model (chloroform). The red curves are the decomposed spectra by the final state ($\mathrm{S}_{0} \rightarrow \mathrm{~S}_{\mathrm{n}}$), from top to bottom, $n=1,2, \ldots 20$.

The CAM-B3LYP/6-31+G(d) level of theory was used for geometry optimization of molecular structure. Solvent effect was considered by applying polarizable continuum model (PCM) for chloroform. Transition dipole moments and transition energies, and permanent dipole moments were calculated for the lowest 20 excited state by using the Tamm-Dancoff Approximation (TDA) ${ }^{[7]}$ with the same level of theory (CAM-B3LYP/6-31+G(d)). Gaussian16 program suit ${ }^{[8],[9]}$ was used for all calculations. For TPA spectrum simulation, we used homemade program running on Igor Pro (Wavemetrics Inc.) based on the reported equations. ${ }^{[10]}$

3. Computational Methodology

We used density functional theory (DFT) level with B3LYP hybrid functional and 6-31G(d,p) basis for the ground state $\left(\mathrm{S}_{0}\right)$ molecular optimization of dyes $\mathbf{1 - 4}$. The Grimme's GD3 version dispersion function was included to the hybrid function during the optimization. With the dispersion included optimized S_{0} geometries in hand, we performed singlet excitation up to five excited states and lowest singlet excited state $\left(\mathrm{S}_{1}\right)$ geometry relaxation as well using the time-dependent density functional theory (TDDFT) with the hybridization of exchange-correlation functional BLYP with the 37% of Hartree-Fock (HF) or exact exchange and a 63% scaling factor for Slater exchange (so the hybrid functional is B3LYP-37) ${ }^{[11-14]}$. The same $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis function is used along with B3LYP-37 functional ${ }^{[15]}$. Polarizable continuum model (PCM) $)^{[13]}$ with various solvents (same as investigated in experiment) was applied in the TD-DFT ${ }^{[16-19]}$ formalism to study the solvent effects on the optical absorption and emission properties of the studied dyes. The spin-orbit coupling matrix elements $<\mathrm{S}_{1}\left|\mathrm{H}_{\mathrm{SO}}\right| \mathrm{T}_{\mathrm{n}}>$ between the singlet $\left(\mathrm{S}_{1}\right)$ state and the energy lower state state T_{n} were calculated at the TDDFT/B3LYP/6-31G(d,p) level using MOLSOC program. ${ }^{[20]}$

The $k_{I C}, k_{r}$ rate constants and fluorescence quantum yield $\left(\varphi_{f f}\right)$ were calculated using the algorithm described in References. ${ }^{[21-23]}$ This algorithm uses the quantum chemical computed matrix elements, energies such as the nonadiabatic coupling matrix elements (NACME), between the S_{I} and S_{0} states, the spin-orbit coupling matrix elements (SOCME) between S1 and energy lower triplet electronic states, and the transition electric dipole moment between the S_{l} and S_{0} states as the input parameters. These input data were obtained using the DFT and at the TDDFT level for the ground and excited states using the B3LYP functional and the 6-31G** basis set. Because, here, the TD-DFT/B3LYP-37 theory method significantly overstimates energy of S_{1} state, we therefore considered experimental S_{1} emission datas to calculate the internal conversion rate constants for these investigated dyes. Similarly, we used S_{1} energies from experiment (as the de-excitation energy from S_{1} to S_{0}) and calculated oscillator strength (f) values from theory to compute the radiative decay rate constants. Most of the quantum chemical calculations were performed with Gaussian 16.[24]

The nonradiative rate constants for internal conversion $\left(k_{I C}\right)$ and the intersystem crossing rate constants were calculated using Plotnikov's formula ${ }^{[25]}$ within Herzberg-Teller (HT) and anharmonic, the Dushinsky effect approximations using the Morse oscillator model as ${ }^{[21]}$

$$
\begin{equation*}
k_{\mathrm{nr}}=\sum_{n}\left|V_{i 0, f n}\right|^{2} \Gamma_{f n}\left[\Delta_{i f}^{2}+\frac{\Gamma_{f n}^{2}}{4}\right]^{-1} \tag{E4}
\end{equation*}
$$

where i is the initial electronic state, f is the final electronic state, n is a vibrational level of f state, Γ_{fn} is the relaxation width the vibrational level $\mid f n>$, $\Delta_{i f}=\left|E_{i 0}-E_{f n}\right|$ is the energy difference between the initial and final vibrational states, and $V_{i 0, f n}$ is the matrix element of a perturbation operator. The perturbation operator is the spin-orbit coupling interaction for ISC transitions and the non-adiabatic coupling interaction for IC processes. Usually $\Gamma_{f n}$ is about $10^{14} \mathrm{~s}^{-1}$ and does not depend strongly on n, and $\Delta_{i f}$ is about $100 \mathrm{~cm}^{-1}$ and we can assume $k_{\mathrm{nr}}=\frac{4}{\Gamma_{f}} \sum_{n}\left|V_{i 0, f n}\right|^{2}{ }^{[25]}$

The k_{IC} was calculated as

$$
\begin{equation*}
k_{I C-H T}=\frac{4}{\Gamma_{f}}\left(D^{2}\left(\sum_{n} \prod_{k} g_{k}^{2}\right)+\sum_{i} P_{i}^{2} t_{i}^{2}\left(\sum_{n} \prod_{k \neq i} g_{k}^{2}\right)+\sum_{i, j \neq i} W_{i j}^{2} t_{i}^{2} b_{j}^{2}\left(\sum_{n} \prod_{\substack{k \neq i \\ k \neq j}} g_{k}^{2}\right)\right) . \tag{E5}
\end{equation*}
$$

Here,

$$
\begin{align*}
& g_{j}=\frac{N_{0} N_{n} \Delta^{b_{0} / 2}}{\alpha} I_{n}\left(\frac{\Delta+1}{2}, \frac{b_{n}+b_{0}}{2}-1, b_{n}\right), \tag{E6}\\
& t_{j}=N_{0} N_{n} \Delta^{b_{0} / 2}\left(\begin{array}{l}
\left.0.5 I_{n}\left(\frac{\Delta+1}{2}, \frac{b_{n}+b_{0}}{2}, b_{n}\right)-0.5 b_{n} I_{n}\left(\frac{\Delta+1}{2}, \frac{b_{n}+b_{0}}{2}-1, b_{n}\right)+\right) \\
I_{n-1}\left(\frac{\Delta+1}{2}, \frac{b_{n}+b_{0}}{2}-1, b_{n}+1\right) \\
b_{j}=\left(K+\ln \frac{2 \beta}{\alpha}\right) g_{j}-\frac{N_{0} N_{n} \Delta^{b_{0} / 2}}{\alpha^{2}} \frac{d I_{n}\left(\frac{\Delta+1}{2}, \frac{b_{n}+b_{0}}{2}-1, b_{n}\right)}{d\left(\frac{b_{n}+b_{0}}{2}-1\right)}
\end{array}\right), \tag{E7}
\end{align*}
$$

The wave function of Morse oscillator is $\psi_{n}(R)=N_{n} \exp (-z / 2) z^{b_{n} / 2} L_{n}^{b_{n}}(z)$, where $z=2 \beta \exp \left(-\alpha\left[R-R_{e}\right]\right), b_{n}=2 \beta-2 n-1, \beta=\frac{1}{\alpha} \sqrt{2 D_{e}}$. The D_{e} value is the dissociation energy, α is an anharmonicity constant, R_{e} is the equilibrium distance, $N_{n}=\left(\frac{\alpha b_{n} n!}{\Gamma\left(b_{n}+n+1\right)}\right)^{1 / 2}, L_{n}^{b_{n}}(z)$ is the n-th Laguerre polynomial, and $\Gamma\left(b_{n}+n+1\right)$ is a Gamma function. Parameters $D e$ and α can be obtained from the anharmonicity parameter χ and the energy ω as $D e=\omega / 4 \chi$ and $\alpha=\sqrt{2} \omega \chi$. We used 0.02 for χ.

Here, $\Delta=\exp (-\alpha K), \quad I_{n}(A, B, C)=\int_{0}^{\infty} \exp (-A z) z^{B} L_{n}^{C}(z) d z, \quad K$ is the displacement of oscillator equilibrium position. In eq. (E8) $\frac{d I_{n}\left(\frac{\Delta+1}{2}, \frac{b_{n}+b_{0}}{2}-1, b_{n}\right)}{d\left(\frac{b_{n}+b_{0}}{2}-1\right)}=\frac{d I_{n}(A, B, C)}{d(B)}$ and can be estimated numerically. The $I_{n}(A, B, C)$ can be written analytically as:

$$
\begin{equation*}
I_{n}(A, B, C)=\frac{\Gamma(1+B) \Gamma(C+n+1)}{\Gamma(n+1) \Gamma(C+1)} A^{-1-B 2} F_{1}\left(1+B,-n, 1+C, \frac{1}{A}\right) \tag{E9}
\end{equation*}
$$

The second term in eq (E4) is Franck-Condon (FC) one, the first and the third are Herzberg-Teller terms. The D, \dot{P} and W concern the nonadiabatic coupling matrix elements between the i-th and f-th electronic states and are expressed as

$$
\begin{aligned}
& D=-\sum_{v} \sum_{q}\left(2 M_{v}\right)^{-1}<\varphi_{i}(\stackrel{r}{r}, s, \stackrel{\vee}{r}, R)\left|\frac{\partial^{2}}{\partial R_{v q}^{2}}\right| \varphi_{f}(\stackrel{r}{r}, s, \stackrel{r}{r})>\left.\right|_{k=k_{0}}(\text { E11 }), \\
& P_{j}=-\sum_{v} \sum_{q} M_{v}^{-1 / 2} L_{v q j}<\varphi_{i} \stackrel{r}{r}, \stackrel{\mathrm{r}}{\stackrel{\mathrm{r}}{2}, R)} \frac{\partial \varphi_{f}(\stackrel{\mathrm{r}}{r}, \stackrel{\mathrm{v}}{\boldsymbol{s}, \mathrm{R})}}{\partial R_{v q}}>\left.\right|_{R=R_{0}}(\mathrm{E} 12) .
\end{aligned}
$$

 coupling matrix elements (NACMEs) of the first and second order, respectively. M_{v} is the mass of the $v^{\text {th }}$ atom, $L_{v q j}$ are coefficients of the linear relation between the Cartesian (R) and the normal coordinates (Q) : $R_{v q}-R_{0 v q}=M_{v}^{-1 / 2} L_{v q j} Q_{j}$.

The Lagrange multiplies technique applies to $\prod_{\substack{k \neq i \\ k \neq j}} g_{k}^{2}$ at HT-approximation and to $\prod_{k \neq i} g_{k}^{2}$ at FC approximation. The Lagrange function is $L=\ln \left[\prod_{k=1}^{3 N-6}\left(\frac{e^{-y_{k}} y_{k}^{n_{k}}}{n_{k}!}\right)\right]-\lambda\left(\sum_{k=1}^{3 N-6} n_{k} \omega_{k}+E_{i f}\right)$, and the solution of $\left(\sum_{k=1}^{3 N-6} y_{k} \exp \left(-\omega_{k} \lambda\right) \omega_{k}\right)=E_{i f}$ leads to $n_{k}=y_{k} \exp \left(-\omega_{k} \lambda\right)$, where λ is the Lagrange multiplier. The Dushinsky effect was included in W and P matrix and vector as ${ }^{[21]}$

$$
\begin{gather*}
\widetilde{P}_{i}=\sum_{l} P_{l} J_{l i}+\sum_{l, m \neq l} K_{l} P_{l m} J_{m i},(\mathrm{E} 13) \\
\widetilde{W}_{i j}=\sum_{l, m \neq l} P_{l m} J_{l i} J_{m j} . \text { (E14) } \tag{E14}
\end{gather*}
$$

Here J is Dushinsky matrix.

The radiative rate constants $\left(k_{r}\right)$ are calculated as ${ }^{[26]}$

$$
\begin{equation*}
k_{r}(p \rightarrow q)=\frac{1}{1.5} f \cdot E_{p q}, \tag{E15}
\end{equation*}
$$

where f is the oscillator strength.

The nonradiative rate constants for intersystem crossing $k_{I S C}$ are calculated as ${ }^{[26]}$

$$
k_{I S C}=\frac{4}{\Gamma_{f}} \sum_{n_{1}, n_{2}, \ldots, n_{3 N-6}}^{E_{i f}=n_{1} \omega_{1}+n_{2} \omega_{2}+. . n_{3 N-6} \omega_{3 N-6}}\left(\left.H_{S O}^{i f}\right|_{R=R_{0}} ^{r}\left[\prod_{k=1}^{3 N-6}\left(\frac{e^{-y_{k}} y_{k}^{n_{k}}}{n_{k}!}\right)^{1 / 2}\right]+\sum_{j=1}^{3 N-6} t_{j} W_{j} \cdot\left[\prod_{\substack{k=1 \\ k \neq j}}^{3 N-6}\left(\frac{e^{-y_{k}} y_{k}^{n_{k}}}{n_{k}!}\right)^{1 / 2}\right]\right)^{2}(\mathrm{E}
$$

where the W_{j} is given by $W_{j}=\left.\sum_{v} \sum_{q} \frac{\partial H_{S O}^{i f}}{\partial R_{v q}}\right|_{R=R_{0}} ^{v}{ }_{v} M_{v}^{-1 / 2} L_{v q j}$. Here $H_{S O}^{i f}$ is matrix element of SOC-operator.

The fluorescence quantum yield from the S_{l} state can be obtained as ${ }^{[27]}$

$$
\begin{equation*}
\varphi_{f l}=\frac{k_{r}}{k_{r}+k_{I C}+\sum_{i} k_{I S T_{i}}} \tag{E17}
\end{equation*}
$$

where $k_{I S T_{i}}$ is a ISC rate constant between S_{I} and energetically lower triplet states T_{i}, k_{r} and $k_{I C}$ are radiative and IC rate constants of the electronic transition from S_{l} to the ground state S_{0}, respectively.

1

2

3

Fig. S17. Representation of charge density distribution in HOMO-1 and LUMO+1 orbitals of the studied dyes. Computed LUMO (shown in MS) and LUMO+1 orbitals of dyes $\mathbf{2}$ and $\mathbf{4}$ are nearly degenerate.

Table S1: Calculated TD-DFT/B3LYP-37/6-31G(d,p) theory level optical absorption for dye $\mathbf{1 .}$

Solvents	Transitions	Wavelength (nm)	Energy (eV)	Osc. strength
n-haxane	$\mathrm{S} 0 \rightarrow \mathrm{~S} 1$	461	2.69	1.4964
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 2$	386	3.21	0.0138
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 3$	351	3.53	0.0772
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 4$	311	3.98	0.0021
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 5$	303	4.09	0.0012
Toluene	$\mathrm{S} 0 \rightarrow \mathrm{~S} 1$	468	2.65	1.5387
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 2$	389	3.18	0.0144
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 3$	354	3.50	0.0767
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 4$	314	3.95	0.0020
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 5$	302	4.11	0.0018
PE	$\mathrm{S} 0 \rightarrow \mathrm{~S} 1$	473	2.62	1.5180
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 2$	396	3.13	0.0153
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 3$	362	3.42	0.0666
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 4$	321	3.86	0.0016
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 5$	303	4.09	0.0144
THF	$\mathrm{S} 0 \rightarrow \mathrm{~S} 1$	473	2.62	1.5063
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 2$	395	3.14	0.0137
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 3$	363	3.41	0.0640
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 4$	322	3.84	0.0014
	$\mathrm{S} 0 \rightarrow$ S5	303	4.09	0.0135
EtAc	$\mathrm{S} 0 \rightarrow \mathrm{~S} 1$	471	2.63	1.4937
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 2$	394	3.15	0.0135
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 3$	362	3.42	0.0645
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 4$	321	3.86	0.0014
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 5$	302	4.10	0.0127
n-octanol	$\mathrm{S} 0 \rightarrow \mathrm{~S} 1$	475	2.61	1.5153
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 2$	397	3.13	0.0138
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 3$	365	3.40	0.0630
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 4$	324	3.83	0.0013
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 5$	303	4.08	0.0140
BuAc	$\mathrm{S} 0 \rightarrow \mathrm{~S} 1$	470	2.64	1.5021
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 2$	393	3.15	0.0137
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 3$	361	3.44	0.0660
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 4$	320	3.87	0.0015
	$\mathrm{S} 0 \rightarrow$ S5	302	4.11	0.0118
CH3CN	$\mathrm{S} 0 \rightarrow \mathrm{~S} 1$	475	2.61	1.4841
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 2$	398	3.12	0.0133
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 3$	368	3.37	0.0582
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 4$	327	3.80	0.0012
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 5$	304	4.07	0.0146

Table S2: Calculated TD-DFT/B3LYP-37/6-31G(d,p) theory level optical S1 \rightarrow S0 emission for dye $\mathbf{1}$.

Solvents	Wavelength (nm)	Energy (eV)	Osc. strength
n-haxane	504	2.46	1.7780
Toluene	513	2.42	1.8304
PB	553	2.24	2.0389
THF	562	2.21	2.0846
EtAc	555	2.23	2.0523
n-octanol	570	2.17	2.1196
Bu Ac	549	2.26	2.0212
CH3CN	590	2.10	2.2071

Table S3: Calculated TD-DFT/B3LYP-37/6-31G(d,p) theory level optical absorption for dye 2.

Solvents	Transitions	Wavelength (nm)	Energy (eV)	Osc. strength
Toluene	$\mathrm{S} 0 \rightarrow \mathrm{~S} 1$	385	3.22	0.2035
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 2$	382	3.25	0.0099
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 3$	326	3.80	1.1371
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 4$	300	4.14	0.0667
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 5$	299	4.15	0.0000
PE	$\mathrm{S} 0 \rightarrow \mathrm{~S} 1$	398	3.12	0.1903
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 2$	393	3.15	0.0090
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 3$	324	3.83	1.1356
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 4$	309	4.01	0.0566
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 5$	307	4.04	0.0011
THF	$\mathrm{S} 0 \rightarrow \mathrm{~S} 1$	400	3.10	0.1933
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 2$	396	3.13	0.0091
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 3$	324	3.83	1.1460
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 4$	311	3.99	0.0557
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 5$	309	4.01	0.0011
EtAc	$\mathrm{S} 0 \rightarrow \mathrm{~S} 1$	398	3.11	0.1893
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 2$	394	3.14	0.0090
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 3$	323	3.83	1.1335
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 4$	310	4.01	0.0558
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 5$	307	4.03	0.0011
n-octanol	$\mathrm{S} 0 \rightarrow \mathrm{~S} 1$	403	3.08	0.1966
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 2$	398	3.11	0.0092
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 3$	324	3.83	1.1556
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 4$	313	3.97	0.0555
	$\mathrm{S} 0 \rightarrow$ S5	310	3.99	0.0011
Bu Ac	$\mathrm{S} 0 \rightarrow \mathrm{~S} 1$	396	3.13	0.1911
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 2$	392	3.16	0.0091
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 3$	324	3.83	1.1366
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 4$	308	4.02	0.0576
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 5$	306	4.05	0.0011
CH3CN	$\mathrm{S} 0 \rightarrow \mathrm{~S} 1$	407	3.04	0.1914
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 2$	403	3.08	0.0087
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 3$	322	3.85	1.1342
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 4$	316	3.92	0.0552
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 5$	314	3.95	0.0010
MeOH	$\mathrm{S} 0 \rightarrow \mathrm{~S} 1$	407	3.05	0.1896
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 2$	402	3.08	0.0086
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 3$	322	3.85	1.1290
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 4$	316	3.92	0.0551
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 5$	314	3.95	0.0010

Table S4: Calculated TD-DFT/B3LYP-37/6-31G(d,p) theory level optical S1 \rightarrow S0 emission for dye 2.

Solvents	Wavelength (nm)	Energy (eV)	Osc. strength
Toluene	570	2.17	0.0731
PB	602	2.06	0.1031
THF	609	2.03	0.1119
EtAc	604	2.05	0.1059
n -octanol	615	2.01	0.1190
Bu Ac	599	2.07	0.0999
$\mathrm{CH3CN}$	629	1.97	0.1378
MeOH	628	1.97	0.1370

Table S5: Calculated TD-DFT/B3LYP-37/6-31G(d,p) theory level optical absorption for dye 3.

Solvents	Transitions	Wavelength (nm)	Energy (eV)	Osc. strength
n-hexane	$\mathrm{S} 0 \rightarrow \mathrm{~S} 1$	468	2.65	1.5619
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 2$	393	3.15	0.0980
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 3$	380	3.26	0.0035
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 4$	336	3.69	0.0006
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 5$	308	4.02	0.0001
Toluene	$\mathrm{S} 0 \rightarrow \mathrm{~S} 1$	474	2.61	1.6020
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 2$	396	3.13	0.1000
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 3$	384	3.23	0.0035
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 4$	339	3.66	0.0006
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 5$	307	4.03	0.0002
CH3CN	$\mathrm{S} 0 \rightarrow \mathrm{~S} 1$	477	2.60	1.5364
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 2$	405	3.06	0.0938
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 3$	390	3.18	0.0035
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 4$	348	3.56	0.0007
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 5$	313	3.96	0.0023
THF	$\mathrm{S} 0 \rightarrow \mathrm{~S} 1$	477	2.60	1.5632
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 2$	403	3.08	0.0960
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 3$	389	3.19	0.0035
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 4$	346	3.59	0.0007
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 5$	311	3.99	0.0023
EtAc	$\mathrm{S} 0 \rightarrow \mathrm{~S} 1$	475	2.61	1.5516
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 2$	402	3.08	0.0957
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 3$	387	3.20	0.0035
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 4$	345	3.59	0.0006
	$\mathrm{S} 0 \rightarrow$ S5	310	3.99	0.0022
PE	$\mathrm{S} 0 \rightarrow \mathrm{~S} 1$	475	2.61	1.5566
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 2$	402	3.09	0.0960
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 3$	387	3.20	0.0035
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 4$	344	3.60	0.0006
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 5$	310	4.00	0.0022
n-octanol	$\mathrm{S} 0 \rightarrow \mathrm{~S} 1$	478	2.59	1.5712
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 2$	403	3.07	0.0961
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 3$	390	3.18	0.0035
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 4$	347	3.58	0.0007
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 5$	312	4.00	0.0023
BuAc	$\mathrm{S} 0 \rightarrow \mathrm{~S} 1$	475	2.61	1.5609
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 2$	401	3.09	0.0963
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 3$	387	3.20	0.0035
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 4$	344	3.60	0.0006
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 5$	310	4.00	0.0022

Table S6: Calculated TD-DFT/B3LYP-37/6-31G(d,p) theory level optical $\mathrm{S} 1 \rightarrow \mathrm{~S} 0$ emission for dye 3.

Solvents	Wavelength (nm)	Energy (eV)	Osc. strength
n-hexane	516	2.40	1.6754
Toluene	528	2.35	1.7455
CH3CN	597	2.08	2.0950
THF	572	2.17	1.9793
EtAc	566	2.19	1.9482
PE	563	2.20	1.9345
n-octanol	579	2.14	2.0129
Bu Ac	560	2.21	1.9173

Table S7: Calculated TD-DFT/B3LYP-37/6-31G(d,p) theory level optical absorption for dye 4.

Solvents	Transitions	Wavelength (nm)	Energy (eV)	Osc. strength
n-hexane	$\mathrm{S} 0 \rightarrow \mathrm{~S} 1$	473	2.62	0.0358
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 2$	472	2.63	0.0067
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 3$	371	3.34	0.0137
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 4$	368	3.36	0.0009
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 5$	333	3.72	1.3750
Toluene	$\mathrm{S} 0 \rightarrow \mathrm{~S} 1$	478	2.59	0.0361
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 2$	477	2.60	0.0071
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 3$	374	3.31	0.0159
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 4$	372	3.33	0.0010
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 5$	335	3.70	1.4280
PE	$\mathrm{S} 0 \rightarrow \mathrm{~S} 1$	489	2.54	0.0302
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 2$	488	2.54	0.0066
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 3$	382	3.25	0.0166
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 4$	380	3.26	0.0009
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 5$	334	3.72	1.4114
THF	$\mathrm{S} 0 \rightarrow \mathrm{~S} 1$	491	2.52	0.0299
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 2$	490	2.53	0.0066
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 3$	383	2.23	0.0173
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 4$	381	3.25	0.0009
	$\mathrm{S} 0 \rightarrow$ S5	334	3.71	1.4247
EtAc	$\mathrm{S} 0 \rightarrow \mathrm{~S} 1$	489	2.53	0.0298
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 2$	489	2.54	0.0065
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 3$	382	3.24	0.0166
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 4$	380	3.26	0.0009
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 5$	333	3.72	1.4082
n-octanol	$\mathrm{S} 0 \rightarrow$ S1	493	2.52	0.0299
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 2$	492	2.52	0.0067
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 3$	384	3.22	0.0179
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 4$	383	3.24	0.0009
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 5$	334	3.71	1.4379
Bu Ac	$\mathrm{S} 0 \rightarrow \mathrm{~S} 1$	488	2.54	0.0307
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 2$	487	2.55	0.0066
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 3$	381	3.25	0.0166
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 4$	379	3.27	0.0009
	$\mathrm{S} 0 \rightarrow$ S5	334	3.71	1.4133
CH3CN	$\mathrm{S} 0 \rightarrow \mathrm{~S} 1$	496	2.50	0.0277
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 2$	496	2.50	0.0064
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 3$	387	3.20	0.0176
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 4$	385	3.22	0.0009
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 5$	333	3.72	1.4132

Table S8: Calculated TD-DFT/B3LYP-37/6-31G(d,p) theory level optical S1 \rightarrow S0 emission for dye 4.

Solvents	Wavelength (nm)	Energy (eV)	Osc. strength
n-hexane	664	1.87	0.0094
Toluene	678	1.83	0.0103
PB	716	1.73	0.0129
THF	725	1.71	0.0136
EtAc	719	1.73	0.0131
n -octanol	732	1.69	0.0142
Bu Ac	712	1.74	0.0126
$\mathrm{CH3CN}$	750	1.65	0.0159

4. References

[1] J. Hrabovský, J. Kováč and K. Vagáčová, Collect. Czechoslov. Chem. Commun., 1986, 51, 1301-1303.
[2] M. Tasior, O. Vakuliuk, D. Koga, B. Koszarna, K. Górski, M. Grzybowski, Ł. Kielesiński, M. Krzeszewski and D. T. Gryko, J. Org. Chem., 2020, 85, 13529-13543.
[3] M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. van Stryland, IEEE J. Quantum Electron. 1990, 26, 760.
[4] K. Kamada, K. Matsunaga, A. Yoshino, K. Ohta, J. Opt. Soc. Am. B 2003, 20, 529.
[5] K. Kamada, Y. Iwase, K. Sakai, K. Kondo, K. Ohta, J. Phys. Chem. C 2009, 113, 11469.
[6] K. Kamada, C. Hara, K. Ogawa, K. Ohta, Y. Kobuke, Chem. Comm. 2012, 48, 7988.
[7] S. Hirata, M. Head-Gordon, Chem. Phys. Lett. 1999, 314, 291.
[8] Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2019.
[9] J. B. Foresman, A. Frisch, "Exploring Chemistry with Electronic Structure Methods", 2nd Ed. (1993) Gaussian Inc., Pittsburgh.
[10] K. Ohta, S. Yamada, K. Kamada, A. D. Slepkov, F. A. Hegmann, R. R. Tykwinski, L. D. Shirtcliff, M. M. Haley, P. Sałek, F. Gel'mukhanov, H. Ågren, J. Phys. Chem. A 2011, 115, 105.
[11] A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.
[12] C. Lee, W. Yang and R. G. Parr, Physical Review B, 1988, 37, 785-789.
[13] R. Ditchfield, W. J. Hehre and J. A. Pople, J. Chem. Phys., 1971, 54, 724-728.
[14] M. J. Frisch, J. A. Pople and J. S. Binkley, J. Chem. Phys., 1984, 80, 3265-3269.
[15] J. Tomasi, B. Mennucci and R. Cammi, Chem. Rev., 2005, 105, 2999-3094.
[16] R. Bauernschmitt and R. Ahlrichs, Chem. Phys. Lett., 1996, 256, 454-464.
[17] M. E. Casida, C. Jamorski, K. C. Casida and D. R. Salahub, J. Chem. Phys., 1998, 108, 4439-4449.
[18] R. E. Stratmann, G. E. Scuseria and M. J. Frisch, J. Chem. Phys., 1998, 109, 8218-8224.
[19] G. Scalmani, M. J. Frisch, B. Mennucci, J. Tomasi, R. Cammi and V. Barone, J. Chem. Phys., 2006, 124, 094107: 1-15.
[20] S. G. Chiodo, M. Leopoldini, MolSOC: A spin-orbit coupling code. Computer Physics Communications 2014, 185 (2), 676-683.
[21] R. R. Valiev, B. S. Merzlikin, R. T. Nasibullin, A. Kurtzevitch, V. N. Cherepanov, R. R. Ramazanov, D. Sundholm and T. Kurten, Phys. Chem. Chem. Phys., 2023, 25, 6406-6415.
[22] R. R. Valiev, R. T. Nasibullin, V. N. Cherepanov, A. Kurtsevich, D. Sundholm and T. Kurtén, Phys. Chem. Chem. Phys., 2021, 23, 6344-6348.
[23] R. R. Valiev, R. T. Nasibullin, V. N. Cherepanov, G. V. Baryshnikov, D. Sundholm, H. Ågren, B. F. Minaev and T. Kurtén, Phys. Chem. Chem. Phys., 2020, 22, 22314-22323.
[24] Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe,
V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
[25] V. G. Plotnikov, Int J Quantum Chem, 1979, 16 (3), 527-541.
[26] R. R. Valiev, V. N. Cherepanov, R. T. Nasibullin, D. Sundholm, and T. Kurten, Phys. Chem. Chem. Phys. 2019, 21 (34), 18495-18500.
[27] E. S. Medvedev and V. I. Osherov, 1995, 57, doi:10.1007/978-3-642-85109-4.

[^0]: a. Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland. E-mail: dtgryko@icho.edu.pl.
 ${ }^{\text {b. NMRI, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 563-8577, Japan. }}$
 c. Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda 669-1337, Japan.
 d. Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland.
 e. Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
 f. Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden

