Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Superconducting Ce₂P₃ and CeP₂ with an interesting planar P layer

Xing Li¹, Aitor Bergara^{2,3,4}, Xiaohua Zhang¹, Fei Li¹, Yong Liu¹, and Guochun Yang^{1*}

 ¹State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
²Physics Department and EHU Quantum Center, Universidad del País Vasco-Euskal Herriko Unibertsitatea, UPV/EHU, 48080 Bilbao, Spain
³Donostia International Physics Center (DIPC), 20018 Donostia, Spain
⁴Centro de Física de Materiales CFM, Centro Mixto CSIC-UPV/EHU, 20018 Donostia, Spain

*Corresponding Authors E-mail: yanggc468@nenu.edu.cn; yanggc@ysu.edu.cn

Index

Page

1. Computational details
2. Phonon dispersion curves of the stable Ce-P compounds
3. The crystal structures of the stable Ce-P compounds7
4. The COHP of the shortest P1-P2 pair and the longest P1-P1/P2 pair in <i>Pmma</i> Ce ₂ P ₃ at 100 GPa8
5. The ELF maps of <i>Pmma</i> Ce ₂ P ₃ at 100 GPa9
6. The phonon dispersion curves and main vibrational modes contributing to the superconductivity of <i>Pmma</i> Ce ₂ P ₃ at 100 GPa
7. The electronic band structure of <i>P6/mmm</i> CeP ₂ at 0 GPa10
8. The Fermi surfaces of <i>P6/mmm</i> CeP ₂ at 0 GPa10
9. The Fermi surface nesting function ξ (Q) of <i>P6/mmm</i> CeP ₂ at 0 GPa11
10. Pressure-dependent projected density of states of <i>P6/mmm</i> CeP ₂ 11
11. Convergence tests of the λ and T_c versus different smearing parameters σ for electrons and phonons in <i>P6/mmm</i> CeP ₂
11. Evolution of total enthalpy and snapshots of the <i>P6/mmm</i> CeP ₂ and <i>Pmma</i> Ce ₂ P ₃ at 300 K from AIMD simulations
12. Length and ICOHP of the Ce/La-P pair and volume of <i>P6/mmm</i> CeP ₂ and LaP ₂ at 0 GPa12
13. Structural information of predicted stable Ce-P phases
14. Elastic constants of <i>P6/mmm</i> CeP ₂ at 0 GPa and <i>Pmma</i> Ce ₂ P ₃ at 50 GPa
15. References

Computational Details

The structure prediction method was based on a global minimization of free energy surfaces combining ab initio total energy calculations, as implemented in the CALYPSO (Crystal Structure AnaLYsis by Particle Swarm Optimization) code.^{1, 2} The structures of Ce_xP_y (x = 1, y = 0.5, 1, 1.5, 2-7; x = 3, y = 1-2) were searched with simulation cell sizes of 1-4 formula units (f.u.) at the selected pressures of 1 atm, and 25, 50, 100, 200, and 300 GPa. In the first step, random structures with certain symmetry were constructed, where atomic coordinates were generated by crystallographic symmetry operations. Local optimizations³ using the VASP code were done with the conjugate gradients method and stopped when enthalpy changes became smaller than 1×10^{-5} eV per cell. After processing the first generation structures, 60% of them with lower enthalpies were selected to construct the next generated. A structure fingerprinting technique of bond characterization matrix was applied to the generated structures, so that identical structures were strictly forbidden. These procedures significantly enhanced the diversity of the structures, which was crucial for structural global search efficiency. In most cases, structural searching simulations for each calculation were stopped after generating 1000 ~ 1200 structures (e.g., about 20 ~ 30 generations).

To further analyze the structures with higher accuracy, we selected a number of structures with lower enthalpies and perform a structural optimization using density functional theory within the generalized gradient approximation as implemented in the VASP code.⁴ In all the calculations, the cutoff energy for the expansion of wavefunctions in plane waves was set to 600 eV, and the Monkhorst-Pack *k*-mesh with a grid spacing of $2\pi \times 0.03$ Å⁻¹ was selected to meet the energy convergence within ~1 meV/atom. The electron-ion interaction was described by projector-augmented-wave potentials with $5s^25p^64f^15d^16s^2$ and $3s^23p^3$ configurations treated as valence electrons for Ce and P atoms, respectively.

Bonding was investigated by the crystal orbital Hamiltonian population (COHP) analysis using the LOBSTER code,⁵ which provides an atom-specific measure of the bonding character of states in a given energy region, and the strength and origin of interatomic interactions can be obtained through the output file "COHPCAR.lobster. The Bader charge analysis⁶ was used to determine charge transfer by analyzing the output file "ACF.dat". The electron localization function (ELF) was used to describe and visualize chemical bonds in stable compounds,⁷ which is achieved by putting the output file "ELFCAR" into the VESTA software.⁸ The phonon calculations were carried out by using supercell finite-displacement method as implemented in the PHONOPY code.⁹ The electron-phonon coupling calculations were carried out with the density functional perturbation theory as executed in the QUANTUM ESPRESSO package.¹⁰ We employed

the pseudopotentials with Ce.pbe-spdn-rrkjus psl.1.0.0.UPF and P.pbe-n-rrkjus psl.0.1.UPF for Ce and P atoms in Pmma Ce₂P₃, and Ce.pz-sp-hgh.UPF and P.pz-n-rrkjus_psl.0.1.UPF for Ce and P atoms in P6/mmm CeP₂, respectively. The considered kinetic energy cutoff and width were 70 Ry and 0.02 Ry, respectively. To reliably calculate the electron-phonon coupling in metallic systems we need to sample dense k-meshes for electronic Brillouin zone integration and enough q-meshes for evaluating average contributions from the phonon modes. Depending on the specific structures of the stable compounds, different k-meshes and qmeshes were used: $6 \times 9 \times 8$ k-meshes and $2 \times 3 \times 4$ q-meshes for Ce₂P₃ in the *Pmma* structure at 100, 75 and 50 GPa, $18 \times 18 \times 18$ k-meshes and $6 \times 6 \times 6$ q-meshes for CeP₂ in the P6/mmm structure at 16.5, 11, 5.5, and 0 GPa. We have calculated the superconducting T_c of Ce-P compounds as estimated from the McMillan-Allen-Dynes formula:11

$$T_{c} = \frac{\omega_{log}}{1.2} exp^{[10]} \left[-\frac{1.04(1 + \lambda)}{\lambda - \mu^{*}(1 + 0.62\lambda)} \right]$$

Here, μ^* is the Coulomb pseudopotential ($\mu^* = 0.1$). In addition, the EPC parameter, λ , and the logarithmic average phonon frequency, ω_{log} were calculated via the Eliashberg spectral function for the electron-phonon interaction:

$$\alpha^{2}F(\omega) = \frac{1}{N(E_{F})} \sum_{kq,\nu} |g_{k,k+q,\nu}|^{2} \delta(\varepsilon_{k}) \delta(\varepsilon_{k+q}) \delta(\omega - \omega_{q,\nu})$$

where

 $\lambda = 2 \int d\omega \frac{\alpha^2 F(\omega)}{\omega} \omega_{log} = exp \left[\frac{2}{\lambda} \int \frac{d\omega}{\omega} \alpha^2 F(\omega) ln^{(m)}(\omega) \right].$ Here, $N(E_F)$ is the electronic density of states at the Fermi level, $\omega_{q,v}$ is the phonon frequency of mode v and wave vector q, and $|g_{k,k+q,v}|$ is the electron-phonon matrix element between two electronic states with momenta k and k + q at the Fermi level.^{12,} 13

The temperature dependence of the superconducting gap (Δ) of CeP₂ at 0 GPa is explored. The electronicphonon interpolation technique applied in the electron-phonon Wannier (EPW) code,¹⁴ which is based on the maximum localized Wannier function, is an efficient and accurate method to calculate the superconducting gaps and T_c . The width of the Fermi surface window is set 0.15 eV and the Dirac δ functions are replaced by Lorentzians of widths (o) 0.025 eV and 0.1 meV for electrons and phonons, respectively. The precedent computations of the electronic wave functions required for the Wannier interpolations are carried out within a uniform unshifted BZ k-mesh of $6 \times 6 \times 6$. An interpolated k-point grid of $72 \times 72 \times 72$ and q-point grid of $24 \times 24 \times 24$ are set to solve the anisotropic Migdal-Eliashberg equations. The fermion Matsubara frequencies cutoff is set to be 1 eV, a reasonable setting is 4 times higher than the largest phonon frequency, our setting is 10 times higher. The Morel-Anderson pseudopotential μ_c^* is set 0.13. **Supplementary Figures**

Fig. S1. Phonon dispersion curves of the stable Ce-P compounds.

Fig. S2. The crystal structures of the stable Ce-P compounds.

For these Ce-P compounds, the degree of aggregation of the P atomic structural units increases with P content, which changes from a single atom in C2/m Ce₃P, $P6_3/mmc$ Ce₃P, and Pnma Ce₂P, to a dimer in $P42_{12}$ Ce₃P₂, to a zigzag chain in *Imma* CeP, to a wrinkled layer in *I4/mmm* CeP₂ or planar layer in *Pmma* Ce₂P₃ and *P6/mmm* CeP₂, and, eventually, to a three-dimensional framework in *Fd-3m* CeP₂ and *Immm/Imma* CeP₅. The same variation trend can be found with increasing the Ce content. The crystal structure of *Im-3* CeP₃ can be considered a new skutterudite-like compound. More interestingly, it shows dynamical stability and superconductivity at ambient pressure, which will be discussed in detail elsewhere.

Fig. S3. The COHP of (a) the shortest P1-P2 pair and (b-c) the longest P1-P1/P2 pair in *Pmma* Ce₂P₃ at 100 GPa.

Fig. S4. The ELF maps of *Pmma* Ce₂P₃ at 100 GPa.

Fig. S5. (a) The phonon dispersion curves (the magnitude of λ is indicated by the thickness of the green curves), and (b) main vibrational modes contributing to the superconductivity of *Pmma* Ce₂P₃ at 100 GPa, where *v* represents the sequence number of the phonon curve from bottom to top.

Fig. S6. The electronic band structure of P6/mmm CeP₂ at 0 GPa.

Fig. S7. (a-c) The Fermi surfaces associated to bands crossing the Fermi level of P6/mmm CeP₂ at 0 GPa, and (d) the side view of merged Fermi surfaces.

Fig. S8. The Fermi surface nesting function ξ (Q) of *P6/mmm* CeP₂ at 0 GPa.

Fig. S9. Pressure-dependent projected density of states (PDOS) of P6/mmm CeP₂.

Fig. S10. Convergence tests of the λ and T_c versus different smearing parameters σ for (a) electrons and (b) phonons in *P6/mmm* CeP₂. Here, we choose 0.025 eV and 0.1 meV for electrons and phonons due to their good convergence.

Fig. S11. Evolution of total enthalpy and snapshots of the (a) P6/mmm CeP₂ and (b) Pmma Ce₂P₃ at 300 K from AIMD simulations.

Supplementary Tables

Table S1. Length and ICOHP of the Ce/La-P pair and volumes of *P6/mmm* CeP₂ and LaP₂ at 0 GPa.

Phase	Pressure (GPa)	Volume (Å ³)	Length of Ce-P pair (Å)	ICOHP of Ce-P pair (eV/Pair)	Length of La-P pair (Å)	ICOHP of La-P pair (eV/Pair)
P6/mmm CeP ₂	0	49.946	2.928	-1.152	-	-
P6/mmm LaP ₂	0	62.679	-	-	3.170	-0.615

Table S2. Structural information of the predicted stable Ce-P phases.

Phases	Pressure	Lattice		Wy	ckoff Positi	ons
	(GPa)	Parameters			(fractional)	
		(Å,°)	atoms	Х	У	Z
<i>Pnma</i> Ce ₂ P	25	a = 5.7653	Ce(4c)	-0.8443	0.7500	0.0463
		b = 4.5319	P(4c)	-0.3959	0.7500	0.7789
		c = 8.2786	P(4c)	-0.6645	0.2500	0.8811
		$\alpha = 90.0000$				
		$\beta = 90.0000$				
		$\gamma = 90.0000$				

$\overline{P42_12 \operatorname{Ce}_3 \operatorname{P}_2}$	25	a = 6.9857	Ce(4e)	0.1800	0.8200	0.0000
		b = 6.9857	Ce(2c)	0.5000	0.0000	0.4050
		c = 3.7241	P(4f)	0.3831	0.6169	0.5000
		$\alpha = 90.0000$				
		$\beta = 90.0000$				
		$\gamma = 90.0000$				
P4/nmm CeP	25	a = 4.6468	Ce(2c)	0.5000	0.0000	0.5537
		b = 4.6468	P(2a)	0.0000	0.0000	0.0000
		c = 3.2310				
		$\alpha = 90.0000$				
		$\beta = 90.0000$				
		$\gamma = 90.0000$				
P6/mmm CeP ₂	25	a = 3.8905	Ce(1a)	0.0000	0.0000	0.0000
		b = 3.8905	P(2d)	0.3333	0.6667	0.5000
		c = 3.6106				
		$\alpha = 90.0000$				
		$\beta = 90.0000$				
		$\gamma = 120.0000$				
P6 ₃ /mmc Ce ₃ P	50	a = 5.8199	Ce(6h)	0.1724	-1.6552	1.2500
		b = 5.8199	P(2d)	0.6667	-0.6667	1.2500
		c = 4.3824				
		$\alpha = 90.0000$				
		$\beta = 90.0000$				
		$\gamma = 120.0000$				
<i>Pmma</i> Ce ₂ P ₃	50	a = 6.3402	Ce(2a)	1.0000	0.0000	0.0000
		b = 4.1236	Ce(2e)	0.7500	0.0000	0.5215
		c = 5.4803	P(2f)	1.2500	0.5000	0.1089
		$\alpha = 90.0000$	P(4j)	1.0544	0.5000	0.6903
		$\beta = 90.0000$				
		$\gamma = 90.0000$				
C2/m Ce ₃ P	100	a = 13.7598	Ce(4i)	0.8786	0.0000	0.1950
		b = 3.7713	Ce(4i)	0.1279	0.0000	0.3242
		c = 7.6586	Ce(4i)	0.8724	0.5000	0.9358
		$\alpha = 90.0000$	P(4i)	0.1228	0.5000	0.5651
		$\beta = 146.5235$				
		$\gamma = 90.0000$				
Imma CeP	100	a = 3.2448	Ce(4e)	0.5000	0.7500	0.6133
		b = 3.9626	P(4e)	0.0000	0.2500	0.6500
		c = 7.8986				
		$\alpha = 90.0000$				
		$\beta = 90.0000$				
		$\gamma = 90.0000$				

<i>I</i> 4/ <i>mmm</i> CeP ₂	100	a = 2.7904	Ce(2b)	0.5000	0.5000	0.0000
		b = 2.7904	P(4e)	0.0000	0.0000	0.8002
		c = 8.9938				
		$\alpha = 90.0000$				
		$\beta = 90.0000$				
		$\gamma = 90.0000$				
Immm CeP ₅	100	a = 3.3249	Ce(2c)	0.0000	0.0000	0.5000
		b = 7.6728	P(81)	0.0000	0.3307	0.7082
		c = 5.0409	P(2a)	0.0000	0.0000	0.0000
		$\alpha = 90.0000$				
		$\beta = 90.0000$				
		$\gamma = 90.0000$				
Fd-3m CeP ₂	200	a = 6.1258	Ce(8b)	0.0000	0.0000	0.5000
		b = 6.1258	P(16c)	0.1250	0.1250	0.1250
		c = 6.1258				
		$\alpha = 90.0000$				
		$\beta = 90.0000$				
		$\gamma = 90.0000$				
<i>Imma</i> CeP ₅	200	a = 3.7001	Ce(4e)	0.5000	1.2500	0.0358
		b = 5.6806	P(4e)	0.0000	0.7500	0.7954
		c = 10.0278	P(8h)	0.0000	0.5614	0.0927
		$\alpha = 90.0000$	P(8h)	0.0000	1.0763	0.6941
		$\beta = 90.0000$				
		$\gamma = 90.0000$				

Table S3. Elastic constants of *P6/mmm* CeP₂ at 0 GPa and *Pmma* Ce₂P₃ at 50 GPa.

P6/mm	<i>n</i> CeP ₂	Pmma Ce ₂	$_2P_3$
C11 (N/m)	215.548	C11 (N/m)	334.810
C12 (N/m)	121.984	C12 (N/m)	146.028
C13 (N/m)	87.355	C13 (N/m)	33.135
C33 (N/m)	276.864	C22 (N/m)	410.442
C44 (N/m)	83.353	C23 (N/m)	167.417
C66 (N/m)	46.782	C33 (N/m)	314.640
		C44 (N/m)	227.514
		C55 (N/m)	137.698
		C66 (N/m)	209.870

References

- 1 Y. Wang, J. Lv, L. Zhu and Y. Ma, *Phys. Rev. B*, 2010, **82**, 094116.
- 2 Y. Wang, J. Lv, L. Zhu and Y. Ma, Comput. Phys. Commun., 2012, 183, 2063-2070.
- 3 G. Kresse and J. Furthmüller, *Phys. Rev. B*, 1996, **54**, 11169.

- 4 J. Hafner, J. Comput. Chem., 2008, 29, 2044-2078.
- 5 R. Nelson, C. Ertural, J. George, V. L. Deringer, G. Hautier and R. Dronskowski, *J. Comput. Chem.*, 2020, **41**, 1931-1940.
- 6 W. Tang, E. Sanville and G. Henkelman, J. Phys.: Condens. Matter, 2009, 21, 084204.
- 7 A. D. Becke and K. E. Edgecombe, J. Chem. Phys., 1990, 92, 5397-5403.
- 8 K. Momma and F. Izumi, J. Appl. Cryst., 2011, 44, 1272-1276.
- 9 S. Baroni, S. de Gironcoli, A. Dal Corso and P. Giannozzi, Rev. Mod. Phys., 2001, 73, 515-562.
- 10 P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni and I. Dabo, *J. Phys: Condens. Matter*, 2009, **21**, 395502.
- 11 P. B. Allen and R. C. Dynes, *Phys. Rev. B*, 1975, **12**, 905.
- 12 J. P. Carbotte, Rev. Mod. Phys., 1990, 62, 1027.
- 13 P. B. Allen and B. Mitrović, Solid State Phys., 1983, 37, 1-92.
- 14 S. Poncé, E. R. Margine, C. Verdi and F. Giustino, Comput. Phys. Commun., 2016, 209, 116-133.