Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Phenothiazine and phenothiazine sulfone derivatives: AIE, HTMs for doping free fluorescent and multiple-resonance TADF OLEDs

Ramakant Gavale,[†]a Melika Ghasemi, [†]b Faizal Khan,^a Dmytro Volyniuk,^b Juozas Vidas Grazulevicius,^b Rajneesh Misra^{*}a

^a Department of Chemistry, Indian Institute of Technology Indore,

Indore- 453552, India

Email: rajneeshmisra@iiti.ac.in

^b Department of Polymer Chemistry and Technology, Kaunas University of Technology, K. Barsausko g. 59, Kaunas 51423, Lithuania;

* Corresponding author

(† Author Contributed equal)

Contents

1)	Synthetic Scheme	57
2)	Chart S1. Chemical structures of phenothiazine and tetraphenylethylene ba	sed
	luminogens (PTZ) ₃ , PTZO ₂ -(PTZ) ₂ , PTZ-(TPE) ₂ , and PTZO ₂ -(TP	'E) ₂
	S	7
3)	Figure. S1. Normalized PL (a) and phosphorescence (b) spectra of the frozen T	ΉF
	solutions of (PTZ) ₃ , PTZO ₂ -(PTZ) ₂ , PTZ-(TPE) ₂ , and PTZO ₂ -(TPE) ₂ recorded	at -
	196 °C ($\lambda_{ex} = 340 \text{ nm}$)	8

4) Figure S2. Normalized absorbance spectra of (a) (PTZ)3, (b) PTZO2-(PTZ)2, (c)
 PTZ-(TPE)2 and (d) PTZO2-(TPE)2 in different polarity solvents, (e) normalized

- 11) Figure S6. Comparison of the simulated absorption spectra of (a) (PTZ)₃ and (b) PTZO₂-(PTZ)₂ generated from DFT and TD-DFT calculations (top) with their

experimenta	al absorption spect	ra recorded	at room temp	perature in T	HF (10 ⁻⁵ M)
(bottom)					S14
12) Figure S7 .	Simulated absorpti	ion spectra o	f (a) PTZ-(T	PE)₂ and (b)	and PTZO ₂ -
(TPE) ₂	generated	from	DFT	and	TD-DFT
calculations	3	S14			
13) Table S4 . (Calculated major ele	ectronic trans	itions for (PT	Z)3, PTZO2-(PTZ) ₂ , PTZ-
(TPE) ₂ , and	a PTZO ₂ -(TPE) ₂ in	the gas phase			
14) Figure S8.	DSC (a) and TGA	(b) thermogr	rams of (PTZ) 3, PTZO2-(]	PTZ)2, PTZ-
(TPE)2, an	d PTZO2-(TPE)2 r	recorded at 10) °C min-1		S15-S16
15) Figure S9 .	cyclic voltammogr	ams of dilute	e solutions of	(PTZ) ₃ , PTZO	2-(PTZ)2, PTZ-
(TPE) ₂ , and	PTZO ₂ -(TPE) ₂ in di	chloromethar	ne recorded a	s sweep rate	of 100mV/s
16) Figure S10	Time of flight (TC	DF) current tr	ansients of ho	oles for depos	ited layers of
(PTZ)3, PT	ZO2-(PTZ)2, PTZ-((TPE)2 and P	ГZO2-(TPE)2.		S22
17) Figure S1118) Figure S12	 EL spectra of devi EL spectra of devi 	ices A1-A4 at ices B1-B4 ar	different voltand R1 at different	ages ent voltages	
19) Figure S13	3. Current and powe	r efficiencies	of devices A1	-A4 (a) and B	31-B4, R1 (b).
					S24.
20) Copies of ¹	H-NMR, ¹³ C-NMR	and HRMS o	of (PTZ)3, PT	ZO ₂ -(PTZ) ₂ ,	PTZ-(TPE) ₂ ,
and PTZO ₂	<u>(TPE)</u>				
21) DFT and	TDDFT data				
S53.					

General methods

Chemicals were used as received unless otherwise indicated. All oxygen or moisture sensitive reactions were performed under a nitrogen/argon atmosphere. ¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra were recorded on a Bruker 500 MHz FT-NMR spectrometer at room temperature. ¹H NMR chemical shifts are reported in parts per million (ppm) relative to the solvent residual peak (CDCl₃, 7.26 ppm). Multiplicities are given as s (singlet), d (doublet), t (triplet) and m (multiplet) and the coupling constants, *J*, are given in hertz. ¹³C NMR chemical shifts are reported relative to the solvent residual peak (CDCl₃, 77.0 ppm). UV-visible absorption spectra were recorded on a PerkinElmer Lambda 35 instrument. Emission spectra were taken in a Fluoromax-4C, S/n.1579D-1417- FM Fluorescence software Ver 3.8.0.60. The relative quantum yields in solution were calculated using Quinine sulphate in 0.5 M H₂SO₄ as standard for (**PTZ**)₃, **PTZO₂-(PTZ)₂, PTZ-(TPE)₂ and PTZO₂-(TPE)₂**. All the measurements were carried out at 25 °C. HRMS was recorded with a Bruker-Daltonics micrOTOF-Q II mass spectrometer.

Optical characterization

Ultraviolet-visible (UV-Vis) absorbance spectra of the films of the compounds were recorded Perkin Elmer Lambda 35 spectrometer. Toluene solutions (1 mg/ml) were drop casted on the quartz substrates for photophysical measurements (Figure S\$\$). The photoluminescence spectra of the solid state of the materials and doped in ZEONEX were measured in air and vacuum at room temperature by Edinburgh Instruments' FLS980 Fluorescence Spectrometer with a excitation wavelength of 340 nm. Photoluminescence quantum yields (PLQY) of the compounds in solid state (spin coated on quartz) and in toluene were obtained using the integrated sphere. PL decay curves were measured by utilizing the PicoQuant LDH-D-C-375 laser (wavelength 374 nm) as the excitation source. Since the PL decay was fitted with two τ components the average lifetime was calculated using the intensity average lifetime Equation (1): ⁵²

$$<\tau>_{f} = \frac{\int_{0}^{x} t \sum a_{i} exp(-t/\tau_{i}) dt}{\int_{0}^{x} \sum a_{i} exp(-t/\tau_{i}) dt} = \frac{\sum a_{i} \tau_{i}^{2}}{\sum a_{i} \tau_{i}}$$
(1)

Thermal characterization

Thermal properties of the synthesized compounds were analysed using differential scanning calorimetry (DSC) technique performed with Perkin Elmer DSC 8500 equipment at heating and cooling rates of 10°C/min under nitrogen atmosphere. An empty aluminum pan was used as a reference. Thermogravimetric analysis (TGA) was performed using Perkin Elmer TGA 4000 apparatus at a heating rate of 20°C/min under nitrogen atmosphere. Melting points were measured by MEL-TEMP (Electrothermal) melting point apparatus.

Ionization potential

Ionization potential (IP^{PE}) of the solid samples were estimated by electron photoemission spectrometry in air. The samples were vacuum-deposited (2×10⁻⁶ mbar) onto fluorine doped tin oxide (FTO) coated glass substrates, exploiting setup consisting of ASBN-D130-CM deep UV deuterium light source, CM110 1/8m monochromator and 6517B Keithley electrometer. Photoelectron emission spectra was recorded exciting the samples from low energy to high energy with the step of 1 nm and recording electron photoemission current at different excitation energies.

For charge mobilities, time of flight technique (TOF) was used. The samples were vacuumdeposited (2×10^{-6} mbar) onto indium doped tin oxide (ITO) coated glass substrates. The TOF setup contains a laser (EKSPLA NL300) used for excitation at 355 nm wavelength. For electron and hole transport in deposited layers at different electric fields, a variety of positive external voltages (U) were applied. TDS 3032C oscilloscope (Tektronix) was used to record the photocurrent transients of holes or electrons.

Electrochemical properties

Electrochemical properties of the compounds in solution were studied using cyclic voltammetry (CV) technique. Micro-Autolab III (Metrohm Autolab) potentiostat-galvanostat equipped with a standard three-electrode configuration consisting of a glassy carbon working electrode, an Ag/Ag^+ reference electrode, and a platinum wire counter electrode. Compounds and ferrocene were dissolved in a solution containing 0.1 M tetrabutylammonium hexafluorophosphate (TBAF₆) as the supporting electrolyte and dry dichloromethane solvent under nitrogen atmosphere at room temperature. CV measurements were performed with a scan rate of 0.1 V/s. The measurements were calibrated using ferrocene/ferrocenium (Fc) system, as an internal standard.

OLEDs

Electroluminescent devices were fabricated using vacuum deposition (2×10⁻⁶ mbar) of organic and metal layers onto pre-cleaned ITO coated glass substrates. Density-voltage and luminance-voltage characteristics were recorded using photodiode PH100-Si-HA-D0 together with the PC-based power and energy Monitor 11S-LINK and Keithley 2400C source meter. Electroluminescence (EL) spectra were recorded by Avantes AvaSpec-2048XL spectrometer.

Synthetic Scheme

Scheme S1. Synthesis of intermediates PTZ-(Br)₂ and PTZO₂-(Br)₂.

The intermediates **PTZO₂-(Br)₂** and **PTZ-(Br)₂** were synthesized according to the literature procedure. (Ref. S1 and Ref. S2). The boronate ester derivatives of phenothiazine and tetraphenylethylene (**PTZ-Bpin** and **TPE-Bpin**) were synthesized according to the literature procedure. (Ref. S3 and Ref. S4).

Chart S1. Chemical structures of phenothiazine and tetraphenylethylene based luminogens $(PTZ)_3$, $PTZO_2$ - $(PTZ)_2$, $PTZ-(TPE)_2$, and $PTZO_2-(TPE)_2$.

Fig. S1. Normalized PL (a) and phosphorescence (b) spectra of the frozen THF solutions of (PTZ)₃, PTZO₂-(PTZ)₂, PTZ-(TPE)₂, and PTZO₂-(TPE)₂ recorded at -196 °C ($\lambda_{ex} = 340$ nm).

Fig. S2 Normalized absorbance spectra of (a) $(PTZ)_3$, (b) $PTZO_2-(PTZ)_2$, (c) $PTZ-(TPE)_2$ and (d) $PTZO_2-(TPE)_2$ in different polarity solvents, (e) normalized emission spectra of $PTZO_2-(TPE)_2$ in different polarity solvents.

Table S1 Photophysical properties of compounds (PTZ)₃, PTZO₂-(PTZ)₂, PTZ-(TPE)₂, and PTZO₂-(TPE)₂.

Compounds	Solvent	$\lambda_{ab}^{}(nm)^{a}$	$\lambda_{em}(nm)^a$	Stokes shift (cm ⁻¹)	${\pmb \phi}_{\rm f}{}^{ m b}$
	Toluene	391	530	6708	0.38
	1,4-Dioxane	387	533	7078	0.50
(PT7)	THF	387	536	7183	0.37
(1 1 2)3	Chloroform	391	536	6919	0.34
	DCM	387	546	7524	0.36
	DMSO	394	563	7619	0.49
	Toluene	334	512	10409	0.20
	1,4-Dioxane	332	516	10741	0.18
PTZO(PTZ)-	THF	333	532	11234	0.15
11202 (112)2	Chloroform	334	532	11144	0.15
	DCM	333	545	11682	0.20
	DMSO	338	577	3060	0.24
	Toluene	383	536	7453	0.39
	1,4-Dioxane	382	541	7694	0.31
PTZ-(TPE)2	THF	382	559	8289	0.27
112 (112)2	Chloroform	385	547	7693	0.35
	DCM	385	563	8213	0.27
	DMSO	385	600	9308	0.19
	Toluene	354	-	-	-
	1,4-Dioxane	352	-	-	-
PTZO2-(TPE)2	THF	354	-	-	-
	Chloroform	353	-	-	-
	DCM	354	-	-	-

DMSO	360	-	-	-
------	-----	---	---	---

(a absorption and emission maxima were recorded in different polarity solvents, b the fluorescence quantum

yields were measured using Quinine sulphate in 0.5 M H₂SO₄ as standard for (PTZ)₃, PTZO₂-(PTZ)₂, PTZ-

(TPE)₂ and PTZO₂-(TPE)₂).

Fig. S3 (a) PL spectra and (b) PL decay of (PTZ)₃, PTZO₂-(PTZ)₂, PTZ-(TPE)₂, and PTZO₂-(TPE)₂ on glass substrate in air and vacuum.

Fig. S4 (a) PL spectra and (b) PL decay of the compounds (1wt%) in ZEONEX on glass substrate in air and vacuum.

	Compounds						
Parameters	(PTZ) ₃	PTZO ₂ (PTZ) ₂	PTZ(TPE) ₂	PTZO ₂ (TPE) ₂			
\mathbf{A}_1	9017.233	9110.058	7823.938	9950.755			
τ_1 (ns)	1.3525	1.1106	2.4278	2.3012			
A ₂	1985.008	1737.818	3000.473	-			
τ_2 (ns)	3.9742	3.375	4.8067	-			
$\sum A_i \tau_i^2$	47846.57	31031.47	115440	-			
$\sum A_i \tau_i$	20084.63	15982.77	33417.33	-			
$\tau_{avg}(ns)$	2.382249	1.941558	3.454494	-			
X ²	1.05	1.01	1.02	1.00			
		Compounds(19	%) in ZEONEX				
A_1	9839.454	9992.021	7246.076	6920.84			
τ_1 (ns)	1.8284	1.1459	2.9773	2.1785			
A ₂	1524.606	1636.245	-	-			
τ_2 (ns)	4.5609	3.2363	-	-			
$\sum A_i \tau_i^2$	64608.32	30257.83	-	-			
$\sum A_i \tau_i$	24944.03	16745.24	-	-			
$\tau_{avg}(ns)$	2.590131	1.806951	-	-			
X ²	1.08	1.00	1.19	1.00			

Fig. S5. Absorption spectra of (a) (**PTZ**)₃ (b) **PTZO**₂-(**PTZ**)₂ (c) **PTZ-(TPE**)₂ and (d) **PTZO**₂-(**TPE**)₂ in THF– water mixtures with different water fractions; (e) Plot of fluorescence intensity *vs.* % of water fraction for compounds (**PTZ**)₃, **PTZO**₂-(**PTZ**)₂, **PTZ-(TPE**)₂, and **PTZO**₂-(**TPE**)₂; (f) Fluorescence images of (**PTZ**)₃, **PTZO**₂-(**PTZ**)₂, **PTZ-(TPE**)₂, and **PTZO**₂-(**TPE**)₂ in different THF–water binary mixtures.

Table S3. Fluorescence quantum yields of (PTZ)₃, PTZO₂-(PTZ)₂, PTZ-(TPE)₂, and PTZO₂-(TPE)₂ in different THF-water mixtures with increasing water percentage.

Water	ϕ_{f}^{a}							
Vol %	(PTZ) ₃	PTZO-(PTZ) ₂	PTZ-(TPE) ₂	PTZO-(TPE) ₂				
0 %	0.31	0.15	0.20	-				
10 %	0.30	0.15	0.18	-				
20 %	0.28	0.13	0.17	-				
30 %	0.25	0.12	0.15	-				
40 %	0.24	0.12	0.13	-				
50 %	0.24	0.12	0.13	-				
60 %	0.23	0.11	0.12	-				
70 %	0.23	0.12	0.19	0.04				
80 %	0.20	0.12	0.26	0.14				
90 %	0.16	0.12	0.22	0.21				

(a Fluorescence quantum yields recorded using quinine sulphate as a standard in 0.5 M H₂SO₄ solution.)

Computational analysis

Fig. S6. Comparison of the simulated absorption spectra of (a) $(PTZ)_3$ and (b) $PTZO_2-(PTZ)_2$ generated from DFT and TD-DFT calculations (top) with their experimental absorption spectra recorded at room temperature in THF (10⁻⁵ M) (bottom).

Fig. S7. Simulated absorption spectra of (a) **PTZ-(TPE)**₂ and (b) and **PTZO**₂-(**TPE**)₂ generated from DFT and TD-DFT calculations.

Table S4. Calculated major electronic transitions for (PTZ)₃, PTZO₂-(PTZ)₂, PTZ-(TPE)₂, and PTZO₂-(TPE)₂ in the gas phase.

	Wavelength	Composition	Assignment	fa
Compounds	(nm)			
(PTZ) ₃	406	HOMO→LUMO	ICT	0.57
		(0.70)		
PTZO ₂ -	339	HOMO-2→LUMO	ICT	0.51
(PTZ) ₂		(0.70)		
PTZ-	421	HOMO→LUMO	ICT	0.59
(TPE) ₂		(0.70)		
PTZO ₂ -	401	HOMO→LUMO	ICT	0.92
(TPE) ₂		(0.70)		

 $f^{a} =$ Oscillatory strength

Thermal properties

Fig. S8. DSC (a) and TGA (b) thermograms of (PTZ)₃, PTZO₂-(PTZ)₂, PTZ-(TPE)₂, and PTZO₂-(TPE)₂ recorded at 10 °C min⁻¹.

Cyclic Voltammetry (CV)

The potentials of reduction and oxidation processes were obtained relative to an internal ferrocene reference (Fc/Fc⁺) (Fig. S10). The IP_{CV} vs Fc values were calculated using equation (1) where the values are 4.98, 5.0, 5.05, and 5.47 eV (vs Fc/Fc⁺), respectively (Table 3). The and values of (**PTZ**)₃ and **PTZO₂-(PTZ**)₂ are almost equal because of the PTZ donor moiety.

$$IP_{CV} = -e(E_{ox} + 4.8) \tag{1}$$

The CV spectra of the compounds indicates that only $PTZO_2-(PTZ)_2$ and $PTZO_2-(TPE)_2$ have reduction potential ($^{E}_{red}$) which is due to the D-A-D structure containing the electron accepting moiety PTZ dioxide. The EA_{CV} values were calculated using Equation (2) and are 3.40eV and 3.52eV, respectively (Table 3).

$$EA_{CV} = -e(E_{red} + 4.8)$$
 (2)

By subtracting IP_{CV} from EA_{CV} it is possible to calculate the gap (E_{gCV}) . The CV spectra of all the compounds were ran for three cycles, the results indicate reversibility and the stability of the samples in solution.

Employing different methods of IP measurements caused small differences between the obtained values that can be explained by different environments in the solution and the solid state. Such small margin of error indicates collaborative electron-donor effect of PTZ donor moiety on electron releasing energy. The absorption band gap of the derivatives has linear effect on the IP values.

Fig. S9 Cyclic voltammograms of the Ferrocene and the dilute solutions of (PTZ)₃, PTZO₂-(PTZ)₂, PTZ-(TPE)₂, and PTZO₂-(TPE)₂ in dichloromethane recorded as sweep rate of 100 mV/s.

Fig. S10 Time of flight (TOF) current transients of holes for deposited layers of (PTZ)₃, PTZO₂-(PTZ)₂, PTZ-

(TPE)₂ and PTZO₂-(TPE)₂.

Device

Fig. S11 EL spectra of devices A1-A4 at different voltages.

Fig. S12 EL spectra of devices B1-B4 and R1 at different voltages.

Fig. S13 Current and power efficiencies of devices A1-A4 (a) and B1-B4, R1 (b).

Fig. S14 ¹H NMR spectra of (PTZ)₃ (CDCl₃, 500 MHz).

Fig. S15. ¹³C {¹H} NMR spectra of (PTZ)₃ (CDCl₃, 126 MHz).

Fig. S16. ¹H NMR spectra of PTZO₂-(PTZ)₂ (CDCl₃, 500 MHz).

Fig. S17. ¹³C $\{^{1}H\}$ NMR spectra of PTZO₂-(PTZ)₂ (CDCl₃, 126 MHz).

Fig. S18. ¹H NMR spectra of PTZ-(TPE)₂ (CDCl₃, 500 MHz).

Fig. S19. ¹³C {¹H} NMR spectra of **PTZ-(TPE)**₂ (CDCl₃, 126 MHz).

Fig. S20. ¹H NMR spectra of PTZO₂-(TPE)₂ (CDCl₃, 500 MHz).

Fig. S21. ¹³C {¹H} NMR spectra of $PTZO_2$ -(TPE)₂ (CDCl₃, 126 MHz).

Fig. S23. HRMS of PTZO₂-(PTZ)₂.

Fig. S25. HRMS of PTZO₂-(TPE)₂.

DFT

(PTZ)₃

Standard orientation:

Center	Atomic		Atomic	Coordinate	es (Angstroms)
Number	Numb	er	Туре	X Y	Z
1	6	0	7.447878	-5.844508	0.892078
2	6	0	6.371145	-5.659044	0.024154
3	6	0	8.013233	-4.738764	1.524132
4	6	0	5.888922	-4.376625	-0.237395
5	1	0	5.906248	-6.508359	-0.467121
6	6	0	7.510020	-3.457538	1.295624
7	1	0	8.843428	-4.867439	2.212193
8	6	0	6.450027	-3.252123	0.399204
9	1	0	7.948493	-2.614970	1.817769
10	7	0	5.924804	-1.963828	0.129746
11	6	0	3.753004	-2.784092	-0.620032
12	6	0	4.519460	-1.818156	0.059019
13	6	0	6.760549	-0.783725	0.363217
14	6	0	2.368977	-2.670831	-0.697318
15	6	0	3.833742	-0.751848	0.665017
16	1	0	7.036177	-0.677900	1.424708
17	6	0	8.015749	-0.757471	-0.520304
18	1	0	6.153803	0.088884	0.114645
19	1	0	1.807834	-3.446912	-1.210518
20	6	0	2.454569	-0.618749	0.545381
21	1	0	4.378983	-0.024673	1.256397

22	1	0	7.697217	-0.805776 -1.567741	
23	1	0	8.623028	-1.649693 -0.339726	
24	1	0	1.965530	0.215121 1.034208	
25	6	0	1.684898	-1.567535 -0.151994	
26	6	0	8.856863	0.499217 -0.276806	
27	1	0	9.739126	0.511692 -0.923547	
28	1	0	8.284465	1.411595 -0.479986	
29	1	0	9.207023	0.553178 0.760421	
30	16	0	4.594273	-4.127493 -1.438532	
31	6	0	0.222350	-1.530848 -0.269155	
32	6	0	-0.645559	-0.485010 -0.229478	
33	1	0	-0.223570	-2.514242 -0.407775	
34	1	0	7.833127	-6.842598 1.074619	
35	6	0	-0.220087	0.943427 -0.266621	
36	6	0	-0.704168	1.867171 0.674360	
37	6	0	0.629602	1.424480 -1.272836	
38	6	0	-0.296690	3.198857 0.653142	
39	1	0	-1.391478	1.537871 1.447301	
40	6	0	1.003984	2.764868 -1.325948	
41	1	0	0.986022	0.741892 -2.037133	
42	6	0	0.575113	3.674181 -0.346007	
43	16	0	-0.820225	4.320173 1.938517	
44	1	0	1.624160	3.104650 -2.147763	
45	7	0	0.969774	5.032956 -0.338181	
46	6	0	-0.964870	5.791328 0.940259	
47	6	0	-0.021157	6.013010 -0.081715	
48	6	0	2.210523	5.424486 -1.011429	
49	6	0	-1.964035	6.728258 1.204041	
50	6	0	-0.110258	7.202081 -0.821390	

51	1	0	2.025296	5.801444 -	2.030054
52	6	0	3.034080	6.440065 -	0.207084
53	1	0	2.809467	4.518841 -	1.123341
54	6	0	-2.019021	7.922107	0.483667
55	1	0	-2.688402	6.521958	1.986086
56	6	0	-1.088608	8.152761 .	-0.527859
57	1	0	0.587004	7.390476 -	1.629613
58	1	0	3.249417	6.004379	0.775116
59	1	0	2.445852	7.344145 -	0.022408
60	6	0	4.336936	6.808014 -	0.923507
61	1	0	-2.784821	8.657586	0.708494
62	1	0	-1.126206	9.071069	-1.106218
63	1	0	4.919874	7.521978 -	0.334324
64	1	0	4.965586	5.926222 -	1.092192
65	1	0	4.142134	7.266496 -	1.899804
66	6	0	-2.108095	-0.750354	-0.202674
67	6	0	-2.635419	-1.869347	0.467172
68	6	0	-3.018185	0.087689	-0.867348
69	6	0	-4.001963	-2.128570	0.483046
70	1	0	-1.972114	-2.527037	1.019469
71	6	0	-4.382699	-0.187435	-0.885710
72	1	0	-2.649879	0.952031 ·	-1.409559
73	6	0	-4.909321	-1.288612	-0.192705
74	16	0	-4.645796	-3.484643	1.447739
75	1	0	-5.038643	0.458271 -	-1.458309
76	7	0	-6.292621	-1.578196	-0.148829
77	6	0	-5.981903	-3.944742	0.359389
78	6	0	-6.695688	-2.927905	-0.304552
79	6	0	-7.262017	-0.505751	-0.386103

80	6	0	-6.343287	-5.283670	0.210098
81	6	0	-7.781106	-3.297582	-1.113230
82	1	0	-7.610238	-0.490060	-1.431425
83	6	0	-8.458555	-0.554422	0.574700
84	1	0	-6.737861	0.437519	-0.222323
85	6	0	-7.445972	-5.633590	-0.570191
86	1	0	-5.763469	-6.047391	0.719398
87	6	0	-8.160856	-4.635240	-1.229224
88	1	0	-8.335647	-2.538975	-1.653475
89	1	0	-8.074983	-0.515984	1.600454
90	1	0	-8.985623	-1.508384	0.476089
91	6	0	-9.431485	0.602097	0.326233
92	1	0	-7.735686	-6.675220	-0.665178
93	1	0	-9.013401	-4.892691	-1.850603
94	1	0	-10.272825	0.562658	1.024296
95	1	0	-8.941025	1.573900	0.453028
96	1	0	-9.842860	0.569267	-0.689186

Rotational constants (GHZ): 0.0413659 0.0266382 0.0168548

PTZO₂-(PTZ)₂

Standard orientation:

 Center
 Atomic
 Atomic
 Coordinates (Angstroms)

 Number
 Number
 Type
 X
 Y
 Z

 1
 6
 0
 7.670149
 -5.225364
 0.888669

 2
 6
 0
 6.572722
 -5.050012
 0.053635

3	6	0	8.172432	-4.124151	1.588967
4	6	0	5.997443	-3.785885	-0.075438
5	1	0	6.151195	-5.872445	-0.514861
6	6	0	7.580290	-2.869510	1.484014
7	1	0	9.027937	-4.246114	2.246757
8	6	0	6.461687	-2.671125	0.651374
9	1	0	7.972089	-2.049098	2.072828
10	7	0	5.801529	-1.431093	0.586694
11	6	0	3.746301	-2.345870	-0.397522
12	6	0	4.412532	-1.370954	0.369732
13	6	0	6.555443	-0.201024	0.874304
14	6	0	2.362252	-2.360189	-0.547509
15	6	0	3.602096	-0.385573	0.969633
16	1	0	6.917723	-0.196160	1.911505
17	6	0	7.710887	0.037049	-0.108556
18	1	0	5.859302	0.632559	0.786984
19	1	0	1.915851	-3.161577	-1.128515
20	6	0	2.227744	-0.374650	0.785447
21	1	0	4.041504	0.351046	1.631852
22	1	0	7.300797	0.043316	-1.124554
23	1	0	8.418885	-0.796639	-0.066617
24	1	0	1.644715	0.388136	1.287916
25	6	0	1.564613	-1.355867	0.017238
26	6	0	8.439493	1.351818	0.184263
27	1	0	9.255340	1.511363	-0.526458
28	1	0	7.763462	2.211234	0.110637
29	1	0	8.872597	1.356375	1.191145
30	16	0	4.728939	-3.523758	-1.289468

31	8	0	3.966135	-4.766773 -1.493588
32	8	0	5.328294	-2.850857 -2.456311
33	6	0	0.106687	-1.424068 -0.144430
34	6	0	-0.815994	-0.425596 -0.147699
35	1	0	-0.272093	-2.435384 -0.278499
36	1	0	8.132117	-6.201542 0.990376
37	6	0	-0.457564	1.020019 -0.211235
38	6	0	-1.021865	1.947362 0.680458
39	6	0	0.411638	1.510025 -1.196617
40	6	0	-0.674007	3.295092 0.634419
41	1	0	-1.726104	1.609511 1.434260
42	6	0	0.726554	2.864154 -1.276556
43	1	0	0.827740	0.823911 -1.926801
44	6	0	0.216001	3.781186 -0.344031
45	16	0	-1.299871	4.427392 1.863012
45 46	16 1	0 0	-1.299871 1.362941	4.4273921.8630123.207777-2.084058
45 46 47	16 1 7	0 0 0	-1.299871 1.362941 0.546311	4.4273921.8630123.207777-2.0840585.156053-0.364130
45 46 47 48	16 1 7 6	0 0 0 0	-1.299871 1.362941 0.546311 -1.472057	4.4273921.8630123.207777-2.0840585.156053-0.3641305.8597070.813623
45 46 47 48 49	16 1 7 6 6	0 0 0 0	-1.299871 1.362941 0.546311 -1.472057 -0.499888	4.4273921.8630123.207777-2.0840585.156053-0.3641305.8597070.8136236.094643-0.177943
45 46 47 48 49 50	16 1 7 6 6 6	0 0 0 0 0 0	-1.299871 1.362941 0.546311 -1.472057 -0.499888 1.791491	4.4273921.8630123.207777-2.0840585.156053-0.3641305.8597070.8136236.094643-0.1779435.586298-1.005894
45 46 47 48 49 50 51	16 1 7 6 6 6 6	0 0 0 0 0 0 0	-1.299871 1.362941 0.546311 -1.472057 -0.499888 1.791491 -2.523827	4.4273921.8630123.207777-2.0840585.156053-0.3641305.8597070.8136236.094643-0.1779435.586298-1.0058946.7551791.007910
45 46 47 48 49 50 51 52	16 1 7 6 6 6 6 6	0 0 0 0 0 0 0 0	-1.299871 1.362941 0.546311 -1.472057 -0.499888 1.791491 -2.523827 -0.615635	4.4273921.8630123.207777-2.0840585.156053-0.3641305.8597070.8136236.094643-0.1779435.586298-1.0058946.7551791.0079107.253718-0.960133
 45 46 47 48 49 50 51 52 53 	16 1 7 6 6 6 6 6 1	0 0 0 0 0 0 0 0 0	-1.299871 1.362941 0.546311 -1.472057 -0.499888 1.791491 -2.523827 -0.615635 1.626583	4.4273921.8630123.207777-2.0840585.156053-0.3641305.8597070.8136236.094643-0.1779435.586298-1.0058946.7551791.0079107.253718-0.9601335.916581-2.043942
 45 46 47 48 49 50 51 52 53 54 	16 1 7 6 6 6 6 6 1 1 6	0 0 0 0 0 0 0 0 0 0	-1.299871 1.362941 0.546311 -1.472057 -0.499888 1.791491 -2.523827 -0.615635 1.626583 2.531949	4.4273921.8630123.207777-2.0840585.156053-0.3641305.8597070.8136236.094643-0.1779435.586298-1.0058946.7551791.0079107.253718-0.9601335.916581-2.0439426.670465-0.210621
 45 46 47 48 49 50 51 52 53 54 55 	16 1 7 6 6 6 6 1 6 1 6 1	0 0 0 0 0 0 0 0 0 0 0 0	-1.299871 1.362941 0.546311 -1.472057 -0.499888 1.791491 -2.523827 -0.615635 1.626583 2.531949 2.438528	4.4273921.8630123.207777-2.0840585.156053-0.3641305.8597070.8136236.094643-0.1779435.586298-1.0058946.7551791.0079107.253718-0.9601335.916581-2.0439426.670465-0.2106214.708985-1.062180
 45 46 47 48 49 50 51 52 53 54 55 56 	16 1 7 6 6 6 6 1 6 1 6	0 0 0 0 0 0 0 0 0 0 0 0 0	-1.299871 1.362941 0.546311 -1.472057 -0.499888 1.791491 -2.523827 -0.615635 1.626583 2.531949 2.438528 -2.606244	4.4273921.8630123.207777-2.0840585.156053-0.3641305.8597070.8136236.094643-0.1779435.586298-1.0058946.7551791.0079107.253718-0.9601335.916581-2.0439426.670465-0.2106214.708985-1.0621807.9215640.246475
 45 46 47 48 49 50 51 52 53 54 55 56 57 	16 1 7 6 6 6 6 1 6 1 6 1 6 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0	-1.299871 1.362941 0.546311 -1.472057 -0.499888 1.791491 -2.523827 -0.615635 1.626583 2.531949 2.438528 -2.606244 -3.268417	4.4273921.8630123.207777-2.0840585.156053-0.3641305.8597070.8136236.094643-0.1779435.586298-1.0058946.7551791.0079107.253718-0.9601335.916581-2.0439426.670465-0.2106214.708985-1.0621807.9215640.2464756.5388901.767927

59	1	0	0.103578	7.450330 -1.746786
60	1	0	2.729252	6.282617 0.795174
61	1	0	1.893307	7.549857 -0.083641
62	6	0	3.842639	7.076832 -0.891254
63	1	0	-3.414157	8.625820 0.417243
64	1	0	-1.706446	9.061246 -1.346170
65	1	0	4.366578	7.839827 -0.308183
66	1	0	4.519433	6.222021 -1.002900
67	1	0	3.664355	7.489446 -1.890816
68	6	0	-2.263046	-0.762924 -0.144788
69	6	0	-2.748037	-1.888931 0.544814
70	6	0	-3.198449	0.013330 -0.847929
71	6	0	-4.101274	-2.210346 0.547976
72	1	0	-2.063896	-2.500560 1.124050
73	6	0	-4.547883	-0.325925 -0.880490
74	1	0	-2.861158	0.878820 -1.408040
75	6	0	-5.035217	-1.430497 -0.163894
76	16	0	-4.697228	-3.563743 1.545661
77	1	0	-5.222855	0.272398 -1.481557
78	7	0	-6.404242	-1.777666 -0.129292
79	6	0	-6.001965	-4.112224 0.460297
80	6	0	-6.749898	-3.147886 -0.242573
81	6	0	-7.416159	-0.755392 -0.408981
82	6	0	-6.306125	-5.469148 0.351703
83	6	0	-7.811322	-3.587969 -1.047702
84	1	0	-7.755835	-0.789770 -1.456445
85	6	0	-8.617142	-0.822552 0.545032
86	1	0	-6.933755	0.214182 -0.273536

87	6	0	-7.385675	-5.889412	-0.426055
88	1	0	-5.700134	-6.191294	0.890269
89	6	0	-8.134675	-4.943238	-1.123022
90	1	0	-8.391346	-2.871011	-1.617301
91	1	0	-8.243730	-0.733965	1.571448
92	1	0	-9.102821	-1.800647	0.474900
93	6	0	-9.635341	0.283386	0.251776
94	1	0	-7.631055	-6.944673	-0.489813
95	1	0	-8.969899	-5.255560	-1.742700
96	1	0	-10.479577	0.231885	0.945506
97	1	0	-9.186635	1.278482	0.349169
98	1	0	-10.037301	0.199864	-0.764498

Rotational constants (GHZ): 0.0399669 0.0253272 0.0162355

PTZ-(TPE)₂

Standard orientation:

Center	Atom	nic At	tomic	Coordinat	es (Angstroms)
Number	Nur	nber	Туре	X Y	ZZ
1	6	0	6.704010	-8.133584	-0.018669
2	6	0	5.620439	-7.641445	-0.747117
3	6	0	7.521366	-7.242736	0.674267
4	6	0	5.378551	-6.269244	-0.811667
5	1	0	4.962613	-8.319256	-1.282569
6	6	0	7.261612	-5.872122	0.644006

7	1	0	8.361431	-7.610435	1.255899
8	6	0	6.195741	-5.360033	-0.111702
9	1	0	7.895018	-5.199609	1.210894
10	7	0	5.912862	-3.973083	-0.178196
11	6	0	3.571993	-4.272561	-0.799222
12	6	0	4.562129	-3.562676	-0.093407
13	6	0	6.976707	-3.008297	0.110715
14	6	0	2.236269	-3.890918	-0.731698
15	6	0	4.146346	-2.474940	0.692869
16	1	0	7.341927	-3.097437	1.146424
17	6	0	8.148439	-3.091853	-0.877937
18	1	0	6.534960	-2.013962	0.024785
19	1	0	1.496971	-4.473552	-1.274474
20	6	0	2.816695	-2.069146	0.719867
21	1	0	4.865481	-1.946136	1.308187
22	1	0	7.753446	-2.943858	-1.889335
23	1	0	8.588437	-4.093683	-0.860508
24	1	0	2.539301	-1.227894	1.343276
25	6	0	1.826645	-2.756340	-0.005286
26	6	0	9.225214	-2.047439	-0.569046
27	1	0	10.047501	-2.108685	-1.287889
28	1	0	8.821679	-1.029447	-0.613189
29	1	0	9.649458	-2.191834	0.431243
30	16	0	4.068422	-5.633047	-1.841047
31	6	0	0.398588	-2.419862	0.014816
32	6	0	-0.226216	-1.235560	0.247026
33	1	0	-0.250284	-3.268914	-0.193255
34	1	0	6.900134	-9.200650	0.009801

35	6	0	0.486900	0.071289	0.352011
36	6	0	0.313202	0.901040	1.472183
37	6	0	1.320060	0.528647	-0.681730
38	6	0	0.969123	2.124835	1.567047
39	1	0	-0.336245	0.575253	2.279441
40	6	0	1.955179	1.763810	-0.598040
41	1	0	1.467690	-0.094906	-1.557806
42	6	0	1.789127	2.592118	0.524901
43	1	0	0.837502	2.735937	2.454935
44	1	0	2.587548	2.097135	-1.414175
45	6	0	2.497574	3.902174	0.640701
46	6	0	2.493949	4.833007	-0.359663
47	6	0	3.208258	4.113981	1.939019
48	6	0	3.406156	6.017131	-0.364444
49	6	0	1.575601	4.746530	-1.536225
50	6	0	4.029932	3.107358	2.475764
51	6	0	3.029584	5.291297	2.684825
52	6	0	2.908075	7.301159	-0.647441
53	6	0	4.787037	5.874831	-0.146595
54	6	0	2.067087	4.926743	-2.841002
55	6	0	0.195631	4.539835	-1.369959
56	6	0	4.674953	3.284268	3.698491
57	1	0	4.163392	2.182423	1.922663
58	6	0	3.664943	5.463837	3.913346
59	1	0	2.385562	6.072490	2.294758
60	6	0	3.754977	8.407546	-0.678216
61	1	0	1.846946	7.428006	-0.839691
62	6	0	5.636098	6.979222	-0.189678

63	1	0	5.192131	4.888773	0.055393
64	6	0	1.214915	4.866807	-3.942237
65	1	0	3.127386	5.109024	-2.988223
66	6	0	-0.658674	4.491998	-2.470211
67	1	0	-0.204571	4.418983	-0.368684
68	6	0	4.494705	4.463818	4.423350
69	1	0	5.315310	2.497970	4.088314
70	1	0	3.507809	6.380256	4.475030
71	6	0	5.123547	8.251328	-0.449905
72	1	0	3.346118	9.392287	-0.886206
73	1	0	6.701191	6.844462	-0.023831
74	6	0	-0.152228	4.648740	-3.761668
75	1	0	1.618843	4.994767	-4.942531
76	1	0	-1.723007	4.336913	-2.317759
77	1	0	4.990669	4.599309	5.380058
78	1	0	5.785360	9.111926	-0.481999
79	1	0	-0.817915	4.608701	-4.618873
80	6	0	-1.708730	-1.198469	0.354541
81	6	0	-2.431045	-2.256755	0.936836
82	6	0	-2.444907	-0.098892	-0.124676
83	6	0	-3.819026	-2.226821	1.014283
84	1	0	-1.892406	-3.097585	1.362716
85	6	0	-3.833328	-0.076694	-0.060208
86	1	0	-1.919043	0.743270	-0.562569
87	6	0	-4.555034	-1.144732	0.500062
88	1	0	-4.345423	-3.049272	1.489057
89	1	0	-4.372455	0.780839	-0.448840
90	6	0	-6.042943	-1.108161	0.617238

91	6	0	-6.858529 -0.769957 -0.426365
92	6	0	-6.572660 -1.472558 1.967664
93	6	0	-8.313467 -0.475214 -0.249849
94	6	0	-6.367806 -0.668916 -1.834632
95	6	0	-6.020236 -0.903778 3.128710
96	6	0	-7.589414 -2.430439 2.118014
97	6	0	-9.268214 -1.056377 -1.102934
98	6	0	-8.761580 0.428149 0.728602
99	6	0	-6.708612 0.438144 -2.631824
100	6	0	-5.606606 -1.696114 -2.417843
101	6	0	-6.490142 -1.255767 4.392707
102	1	0	-5.219213 -0.176855 3.033420
103	6	0	-8.051465 -2.791625 3.382446
104	1	0	-8.015553 -2.893118 1.233994
105	6	0	-10.624793 -0.770648 -0.960607
106	1	0	-8.939003 -1.740685 -1.879075
107	6	0	-10.117027 0.723449 0.863395
108	1	0	-8.037373 0.900203 1.384184
109	6	0	-6.275322 0.530429 -3.953223
110	1	0	-7.314097 1.232466 -2.205753
111	6	0	-5.182939 -1.609508 -3.742714
112	1	0	-5.349287 -2.566816 -1.823854
113	6	0	-7.508133 -2.202154 4.525171
114	1	0	-6.057300 -0.793821 5.275575
115	1	0	-8.835001 -3.538372 3.474679
116	6	0	-11.055453 0.121240 0.023534
117	1	0	-11.346094 -1.241703 -1.622445
118	1	0	-10.439770 1.428728 1.623995

119	6	0	-5.510122 -0.493474 -4.514845
120	1	0	-6.539954 1.401197 -4.546514
121	1	0	-4.599210 -2.417943 -4.173632
122	1	0	-7.869572 -2.482703 5.510228
123	1	0	-12.111813 0.350208 0.130130
124	1	0	-5.178239 -0.425774 -5.546794

Rotational constants (GHZ): 0.0276765 0.0165274 0.0121838

PTZO₂-(TPE)₂

Standard orientation:

Center	Atomic		Atomic	Coordinates (Angstrom		
Number	Numb	er	Туре	X Y	Z	
1	6	0	6.971095	-7.624615	0.203597	
2	6	0	5.860741	-7.159949	-0.491773	
3	6	0	7.773094	-6.708365	0.891233	
4	6	0	5.568353	-5.796142	-0.494809	
5	1	0	5.213550	-7.830702	-1.047227	
6	6	0	7.465127	-5.351720	0.913031	
7	1	0	8.643690	-7.056576	1.439216	
8	6	0	6.337698	-4.860838	0.226147	
9	1	0	8.087694	-4.676991	1.487899	
10	7	0	5.962362	-3.507397	0.298385	
11	6	0	3.670198	-3.887708	-0.495487	

12	6	0	4.606909	-3.136235	0.239934
13	6	0	6.994503	-2.488864	0.548366
14	6	0	2.310173	-3.592417	-0.492948
15	6	0	4.096227	-2.046104	0.973890
16	1	0	7.462902	-2.638555	1.530707
17	6	0	8.055957	-2.428454	-0.559502
18	1	0	6.492096	-1.523019	0.589806
19	1	0	1.643620	-4.234300	-1.061064
20	6	0	2.747244	-1.726576	0.944231
21	1	0	4.750796	-1.470734	1.617924
22	1	0	7.545502	-2.261472	-1.514434
23	1	0	8.564793	-3.393743	-0.646159
24	1	0	2.399965	-0.895147	1.545725
25	6	0	1.812283	-2.483738	0.205461
26	6	0	9.081887	-1.321940	-0.298306
27	1	0	9.828349	-1.286945	-1.096817
28	1	0	8.605490	-0.336368	-0.247014
29	1	0	9.614829	-1.482312	0.646030
30	16	0	4.276688	-5.182269	-1.546653
31	8	0	3.241357	-6.214469	-1.724503
32	8	0	4.894103	-4.572235	-2.738073
33	6	0	0.367284	-2.228346	0.191210
34	6	0	-0.318031	-1.069812	0.376487
35	1	0	-0.229752	-3.117388	-0.001766
36	1	0	7.214256	-8.681756	0.206446
37	6	0	0.334274	0.270912	0.442594
38	6	0	0.115848	1.130095	1.532453

39	6	0	1.156044	0.726472	-0.600931
40	6	0	0.720556	2.382326	1.589499
41	1	0	-0.527051	0.805492	2.345417
42	6	0	1.738486	1.989437	-0.555575
43	1	0	1.334645	0.081337	-1.455398
44	6	0	1.529242	2.847398	0.537259
45	1	0	0.556472	3.017854	2.454546
46	1	0	2.361920	2.321147	-1.379108
47	6	0	2.181314	4.189598	0.611694
48	6	0	2.140319	5.085214	-0.419640
49	6	0	2.878793	4.473167	1.903352
50	6	0	2.998636	6.307867	-0.464038
51	6	0	1.229427	4.917037	-1.593154
52	6	0	3.739869	3.519268	2.473605
53	6	0	2.650535	5.666087	2.609882
54	6	0	2.444770	7.556149	-0.798822
55	6	0	4.383017	6.236853	-0.233693
56	6	0	1.717675	5.062541	-2.903392
57	6	0	-0.141981	4.665121	-1.419889
58	6	0	4.374650	3.762213	3.690299
59	1	0	3.912523	2.583243	1.950721
60	6	0	3.276014	5.904607	3.832373
61	1	0	1.976203	6.407138	2.193642
62	6	0	3.240925	8.697885	-0.867760
63	1	0	1.380482	7.626900	-1.001817
64	6	0	5.181475	7.376219	-0.315097
65	1	0	4.831022	5.278643	0.007651

66	6	0	0.871587	4.924174	-4.002204
67	1	0	2.770694	5.279039	-3.056507
68	6	0	-0.990886	4.539621	-2.518308
69	1	0	-0.540009	4.571184	-0.414812
70	6	0	4.144867	4.956642	4.375697
71	1	0	5.046025	3.016237	4.106377
72	1	0	3.080748	6.831888	4.363384
73	6	0	4.613564	8.612755	-0.626841
74	1	0	2.789495	9.654317	-1.115787
75	1	0	6.250455	7.296577	-0.139095
76	6	0	-0.486779	4.661634	-3.814367
77	1	0	1.273127	5.025435	-5.006450
78	1	0	-2.048977	4.350455	-2.361085
79	1	0	4.632936	5.143953	5.327690
80	1	0	5.235992	9.500640	-0.689020
81	1	0	-1.147757	4.560142	-4.670093
82	6	0	-1.801576	-1.099707	0.462667
83	6	0	-2.482115	-2.177997	1.058189
84	6	0	-2.579820	-0.046374	-0.052140
85	6	0	-3.870845	-2.211919	1.113714
86	1	0	-1.912091	-2.983586	1.510493
87	6	0	-3.968558	-0.088438	-0.009110
88	1	0	-2.087001	0.809469	-0.501617
89	6	0	-4.648263	-1.177553	0.563196
90	1	0	-4.365612	-3.048282	1.597889
91	1	0	-4.540849	0.733864	-0.425299
92	6	0	-6.137960	-1.210769	0.654068

93	6	0	-6.949693 -0.930407 -0.409575
94	6	0	-6.673779 -1.579152 2.000967
95	6	0	-8.420112 -0.704513 -0.263572
96	6	0	-6.438043 -0.830126 -1.810483
97	6	0	-6.177656 -0.959472 3.161279
98	6	0	-7.638780 -2.589422 2.149442
99	6	0	-9.329406 -1.337805 -1.129179
100	6	0	-8.929887 0.185025 0.697319
101	6	0	-6.815902 0.245550 -2.633523
102	6	0	-5.618269 -1.829878 -2.361078
103	6	0	-6.653127 -1.314462 4.422377
104	1	0	-5.416868 -0.190237 3.067570
105	6	0	-8.105825 -2.953140 3.411324
106	1	0	-8.020558 -3.090553 1.266071
107	6	0	-10.700531 -1.115585 -1.015693
108	1	0	-8.953368 -2.012488 -1.892282
109	6	0	-10.300128 0.416460 0.803462
110	1	0	-8.242256 0.697970 1.361398
111	6	0	-6.362531 0.335431 -3.948340
112	1	0	-7.466323 1.017370 -2.233059
113	6	0	-5.174025 -1.746101 -3.679386
114	1	0	-5.332172 -2.677476 -1.747193
115	6	0	-7.619482 -2.313788 4.552926
116	1	0	-6.265088 -0.813151 5.304600
117	1	0	-8.848386 -3.740731 3.502548
118	6	0	-11.192285 -0.236985 -0.048392
119	1	0	-11.385455 -1.626087 -1.686819

	120	1	0	-10.670727 1.112360 1.550757
	121	6	0	-5.539181 -0.660389 -4.477309
	122	1	0	-6.656949 1.182068 -4.562147
	123	1	0	-4.544838 -2.533179 -4.084987
	124	1	0	-7.984963 -2.596301 5.535913
	125	1	0	-12.260205 -0.057712 0.035711
	126	1	0	-5.191477 -0.594929 -5.504146
R	otational	constant	s (GI	HZ): 0.0262281 0.0161129 0.0117663

TD-DFT

(PTZ)₃

Excitation energies and oscillator strengths:

Excited State 1: Singlet-A 3.0572 eV 405.55 nm f=0.5688 <S**2>=0.000 197 -> 198 0.69607

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -3175.68858448

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 2: Singlet-A 3.3267 eV 372.69 nm f=0.0794 <S**2>=0.000 196 -> 198 0.68590

Excited State 3: Singlet-A 3.4258 eV 361.91 nm f=0.0247 <S**2>=0.000 195 -> 198 0.68463

Excited State 4: Singlet-A 3.7283 eV 332.55 nm f=0.0218 <S**2>=0.000 194 -> 198 0.16289

195 -> 199	0.10151
197 -> 199	0.63624

Excited State	5: Singlet-A	3.8030 eV 326.02 nm f=0.0115 <s**2>=0.000</s**2>
195 -> 200	0.12948	
196 -> 199	0.16244	
196 -> 200	0.12868	
196 -> 201	0.19770	
197 -> 200	0.51404	
197 -> 201	0.27769	

Excited State	6: Singlet-A	3.8580 eV 321.37 nm f=0.0069 <s**2>=0.000</s**2>
194 -> 198	-0.10996	
195 -> 199	0.23662	
195 -> 200	-0.12541	
196 -> 200	0.19202	
197 -> 200	-0.22056	
197 -> 201	0.45226	
197 -> 202	-0.19745	
197 -> 203	-0.11893	

SavETr: write IOETrn= 770 NScale= 10 NData= 16 NLR=1 NState= 6 LETran= 118.

PTZO₂-(PTZ)₂

Excitation energies and oscillator strengths:

Excited State 1: Singlet-A 3.0606 eV 405.10 nm f=0.5077 <S**2>=0.000

205 -> 206 0.69892

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -3326.06923826

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State	2:	Singlet-A	3.2418 eV	382.46 nm	f=0.0922	<s**2>=0.000</s**2>
204 -> 206		0.69717				
Excited State	3:	Singlet-A	3.4877 eV	355.49 nm	f=0.0220	<s**2>=0.000</s**2>
203 -> 207		0.12046				
204 -> 207		0.10778				
205 -> 207		0.66990				
Excited State	4:	Singlet-A	3.6586 eV	338.89 nm	f=0.5148	<s**2>=0.000</s**2>
203 -> 206		0.68264				
Excited State	5:	Singlet-A	3.7872 eV	327.37 nm	f=0.0406	<s**2>=0.000</s**2>
204 -> 207		0.61010				
204 -> 208		-0.23619				
205 -> 207		-0.11951				
205 -> 208		-0.12195				
205 -> 209		-0.11073				
Excited State	6:	Singlet-A	3.8104 eV	325.39 nm	f=0.0053	<s**2>=0.000</s**2>
202 -> 206		0.11135				

204 -> 210	-0.12671
205 -> 208	-0.35953
205 -> 210	0.45025
205 -> 211	-0.16269
205 -> 212	-0.20282
205 -> 214	-0.11360

SavETr: write IOETrn= 770 NScale= 10 NData= 16 NLR=1 NState= 6 LETran= 118.

PTZ-(TPE)₂

Excitation energies and oscillator strengths:

Excited State 1: Singlet-A 2.9453 eV 420.96 nm f=0.5884 <S**2>=0.000 245 -> 246 0.69657 This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -3114.17269158

Copying the excited state density for this state as the 1-particle RhoCI density.

3.1865 eV 389.09 nm f=0.2043 <S**2>=0.000 Excited State 2: Singlet-A 245 -> 247 0.69204 3.3790 eV 366.93 nm f=0.2047 <S**2>=0.000 Excited State 3: Singlet-A 243 -> 246 -0.19117 244 -> 246 0.65524 Excited State 4: 3.4482 eV 359.57 nm f=0.1927 <S**2>=0.000 Singlet-A 243 -> 246 0.65637 244 -> 246 0.20184 3.5410 eV 350.13 nm f=0.0674 <S**2>=0.000 Excited State 5: Singlet-A 245 -> 248 0.66817 Excited State 6: 3.6642 eV 338.37 nm f=0.0289 <S**2>=0.000 Singlet-A 243 -> 246 0.11877 243 -> 247 0.14951

244 -> 247 0.66292

SavETr: write IOETrn= 770 NScale= 10 NData= 16 NLR=1 NState= 6 LETran= 118.

PTZO₂-(TPE)₂

Excitation energies and oscillator strengths:

Excited State 1: Singlet-A 3.0914 eV 401.06 nm f=0.9157 <S**2>=0.000 253 -> 254 0.70067

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -3264.54798096

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State	2:	Singlet-A	3.3250 eV	372.88 nm	f=0.3138	<s**2>=0.000</s**2>
252 -> 254		0.59157				
253 -> 255		0.37011				

Excited State 3: Singlet-A 3.3958 eV 365.11 nm f=0.0426 <S**2>=0.000 252 -> 254 -0.37289 253 -> 255 0.58693

Excited State 4: Singlet-A 3.6113 eV 343.33 nm f=0.0796 <S**2>=0.000 251 -> 254 0.65862 253 -> 257 0.23072

Excited State	5:	Singlet-A	3.6355 eV	341.04 nm	f=0.0323	<s**2>=0.000</s**2>
251 -> 256	-	-0.15018				
252 -> 255	-	-0.10519				
253 -> 256		0.66049				

Excited State 6: Singlet-A 3.7023 eV 334.89 nm f=0.3243 <S**2>=0.000 252 -> 255 0.66970 253 -> 257 -0.12772

SavETr: write IOETrn= 770 NScale= 10 NData= 16 NLR=1 NState= 6 LETran= 118.

References

- S1. B. Sarkar, E. Prasad and R. L. Gardas, *Mater. Adv.*, 2022, **3**, 2871–2883.
- S2. J. Yang, H. Gao, Y. Wang, Y. Yu, Y. Gong, M. Fang, D. Ding, W. Hu, B. Z. Tang and Z. Li, *Mater. Chem. Front.*, 2019, **3**, 1391–1397.
- J. Huang, X. Yang, J. Wang, C. Zhong, L. Wang, J. Qin and Z. Li, J. Mater. Chem., 2012, 22, 2478–2484.
- S4. F. Khan, A. Ekbote, S. M. Mobin and R. Misra, J. Org. Chem., 2021, 86, 1560–1574.