Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supporting Information for

Plastic scintillation fiber with europium complexes for lowdose X-ray detection and long-distance imaging

Gang Ren^a, Zhouyuanhang Wang^a, Yan Kuai^a, Zhigang Cao^a, Feng Xu^a, Yu Liu^a, Kang Xie^b, Siqi Li*a, Benli Yu^a, Zhijia Hu*a

a.Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, School of Physics and Optoelectronic Engineering, Anhui University, Hefei, 230601, Anhui, P. R. China

b. School of Opto-Electronic Engineering, Zaozhuang University, Zaozhuang 277160, Shandong, China

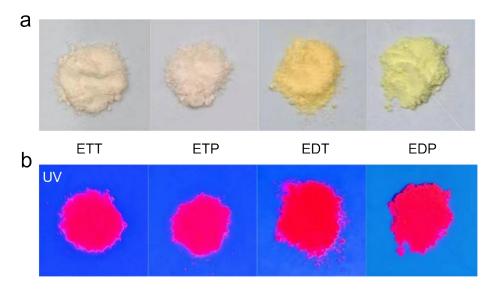
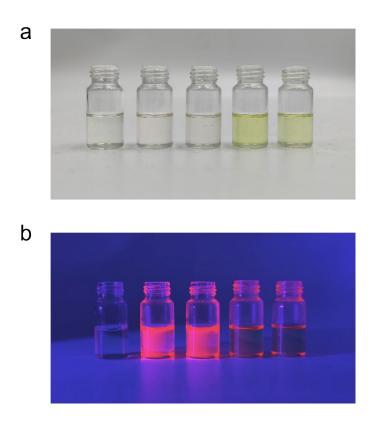
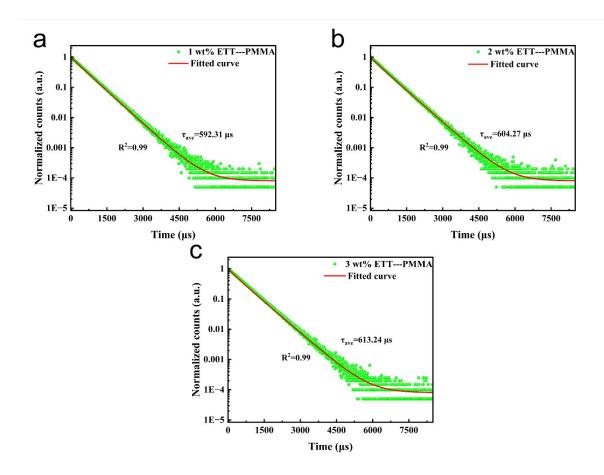




Figure S1. Photographs of the four complexes under natural light (a) and UV light (b).

Figure S2. Photographs of five solutions under natural (a) and UV light (b), from left to right: EuCl₃ solution, ETT solution, ETP solution, EDT solution, and EDP solution.

Figure S3. PL decay curves for 1 wt% ETT (a), 2 wt% ETT (b), and 3 wt% ETT (c) scintillators and their respective double-exponential function fit curves (Ex=367 nm).

Table S1. Fitting parameters for ETT, 1 wt% ETT, 2 wt% ETT, 3 wt% ETT, 4 wt% ETT. τ_1 and τ_2 , denoting radiative and non-radiative transitions. A_1 and A_2 represent the weights of τ_1 and τ_2 respectively. The lifetime of the sample can be calculated using the following formula:

Sample	A_1	A_2	$\tau_1 (\mu s)$	$\tau_{2}(\mu s)$	τ_{avg} (μs)	R ²
ETT	0.97	0.03	560.00	189.00	556.17	0.99
1 wt% ETT	0.95	0.05	600.00	300.00	592.31	0.99
2 wt% ETT	0.90	0.10	620.00	243.00	604.27	0.99
3 wt% ETT	0.87	0.13	635.00	267.00	613.24	0.99

$$\tau_{avg} = \frac{{A_1}{\tau_1}^2 + {A_2}{\tau_2}^2}{{A_1}{\tau_1} + {A_2}{\tau_2}} \label{eq:taug}$$
 (1)

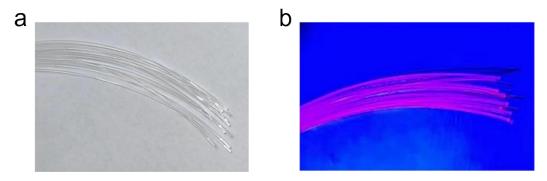


Figure S4. Photographs of Eu-PSF in natural (a) and UV light (b).

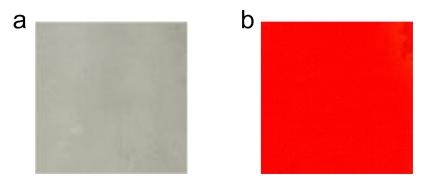


Figure S5. Scintillator film under natural (a) and UV light (b).

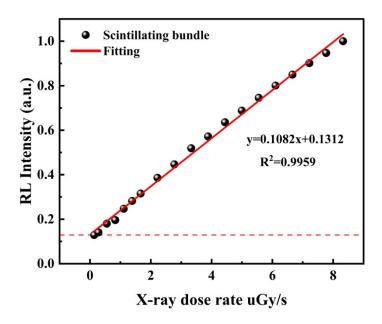


Figure S6. Dependence of RL intensity of scintillator membranes on X-ray dose rate.

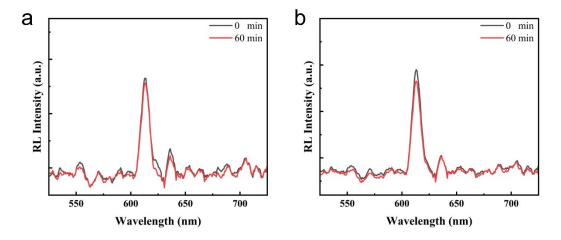


Figure S7. a) RL spectra of Eu-PSF for 0 min and 60 min at an X-ray dose of 0.555 μ Gy/s. b) RL spectra of Eu-PSF for 0 min and 60 min at an X-ray dose of 8.325 μ Gy/s.

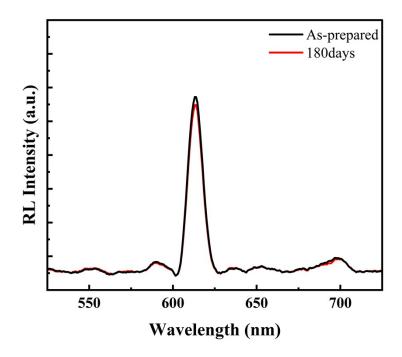


Figure S8. RL spectra of Eu-PSF at the start and 180 days later.

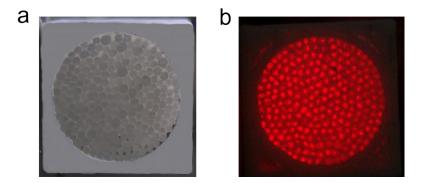


Figure S9. a) Photograph of fiber array. b) Fiber array under X-ray excitation.