Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Enhancing the photo-response performance of SnSe-based photoelectrochemical photodetector via Ga doping

Zhiping Liang^a, Run Hao^a, Hualong Luo^a, Zhenming He^a, Liumei Su^{a,*}, and Xing Fan^{b,*} ^a State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.

^b Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Minzu University, Nanning 530006, China.

* Corresponding author. Email: suliumei2020@gxu.edu.cn, fanxing@gxmzu.edu.cn

Fig. S1 (a) FESEM images and (b) EDS mapping of SnSe and $Ga_xSn_{1-x}Se$.

Fig. S2 Crystal structures of (a) SnSe and (b-c) Ga_{0.03}Sn_{0.97}Se.

Fig. S3 Projected density of states for (a) SnSe and (b) Ga_{0.03}Sn_{0.97}Se.

Fig. S4 The linear sweep voltammogram (LSV) curves of $SnSe/Ga_xSn_{1-x}Se$ -based PEC photodetectors with and without the illumination of white light (600 mW cm⁻²).

Fig. S5 I-t curves of SnSe/Ga_xSn_{1-x}Se-based PEC photodetectors under the illumination of white light (600 mW cm⁻²) with various bias voltages.

Fig S6. I-T curves of $SnSe/Ga_xSn_{1-x}Se$ -based PEC photodetectors under dark conditions.

Fig. S7 I-t curves of $SnSe/Ga_xSn_{1-x}Se$ -based PEC photodetectors under the illumination of different quasi-monochromatic lights.

Fig. S8 (a) Photo-response of SnSe/Ga_{0.03}Sn_{0.97}Se-based PEC photodetectors under the illumination of white light with different power intensities. (b) Corresponding I_{ph} , (c) the calculated R_{ph} , (d) and D* of SnSe/Ga_{0.03}Sn_{0.97}Se-based photodetector.

Fig. S9 The D* of SnSe/Ga_{0.03}Sn_{0.97}Se-based photodetector illuminated by various wavelengths of light with different power intensities.

Fig. S10 Time stability test of $SnSe/Ga_xSn_{1-x}Se$ -based PEC photodetector with time duration of one week in 0.5 M KOH.

Fig. S11 The EIS curves of $SnSe/Ga_xSn_{1-x}Se$ -based PEC photodetector (Inset: enlarged image of the high-frequency part).

		Ι	Р	R	D*
System		(µA cm ⁻²)	(mW cm ⁻²)	$(\mu A \ mW^{-1})$	(10^7 Jones)
	0.6 V	28.90	600	0.05	1.17
	0.4 V	18.81	600	0.03	1.34
	0.2 V	10.74	600	0.02	1.22
	0 V	4.32	600	0.01	0.88
	365 nm	3.20	6.17	0.52	3.01
SnSe	420 nm	4.01	87	0.05	0.87
	475 nm	3.10	95	0.03	0.19
	520 nm	1.30	88.50	0.01	0.21
	600 nm	0.27	94.20	0.00	0
	650 nm	0.20	87.90	0.00	0
	0.6 V	114	600	0.19	3.31
	0.4 V	85.30	600	0.14	3.04
	0.2 V	64.16	600	0.11	2.67
	0 V	41.66	600	0.07	2.06
	365 nm	9.86	6.17	1.60	26.4
Ga _{0.03} Sn _{0.97} Se	420 nm	13.23	87	0.15	2.74
	475 nm	6.57	95	0.07	1.39
	520 nm	2.50	88.50	0.03	0.63
	600 nm	1.35	94.20	0.01	0.21
	650 nm	0.90	87.90	0.01	0.22
	0.6 V	48.39	600	0.08	1.72
	0.4 V	41.60	600	0.07	1.94
Ga _{0.05} Sn _{0.95} Se	0.2 V	30	600	0.05	1.89
	0 V	18.30	600	0.03	1.83
	365 nm	7.80	6.17	1.26	22.70

Table S1. PEC Photo-response parameters of $SnSe/Ga_xSn_{1-x}Se$ -based PEC photodetectors.

	420 nm	7.92	87	0.09	1.86
	475 nm	6.46	95	0.07	1.52
	520 nm	2.30	88.50	0.03	0.69
	600 nm	1.10	94.20	0.01	0.23
	650 nm	0.82	87.90	0.01	0.24
	0.6 V	43.16	600	0.07	1.97
	0.4 V	29.30	600	0.05	1.76
	0.2 V	27.39	600	0.05	2.07
	0 V	15.75	600	0.03	1.54
	365 nm	7.24	6.17	1.17	13.3
Ga _{0.10} Sn _{0.90} Se	420 nm	7.30	87	0.08	1.04
	475 nm	4.72	95	0.05	1.07
	520 nm	1.91	88.50	0.02	0.51
	600 nm	0.37	94.20	0.00	0
	650 nm	0.23	87.90	0.00	0

 Table S2. PEC Photo-response parameters of SnSe-based PEC photodetectors under various wavelengths with different light densities.

Q Q -		Ι	Р	R	D*
ShSe		(µA cm ⁻²)	(mW cm ⁻²)	(µA mW ⁻¹)	(10 ⁷ Jones)
	Ι	14.1	361	0.039	1.4
white	II	15.5	398	0.0389	1.39
light	III	16.49	431	0.038	1.16
	IV	18.2	483	0.0377	1.13
	Ι	1.1	6.21	0.177	9.15
2(5	II	1.2	6.81	0.176	9.07
303 nm	III	1.3	7.38	0.176	8.92
	IV	1.31	7.88	0.166	8.25
420 nm	Ι	1.34	62.1	0.022	1.06

	II	1.38	69.7	0.02	0.63
	III	1.52	86.8	0.0175	0.52
	IV	1.56	96.7	0.0161	0.48
	Ι	0.55	66.6	0.008	0.26
175	II	0.59	78.8	0.007	0.22
4/3 nm	III	0.63	88.1	0.007	0.21
	IV	0.65	91.5	0.007	0.21
	Ι	0.52	68.9	0.0075	0.27
520	II	0.56	75	0.00746	0.26
520 nm	III	0.66	89.3	0.0074	0.26
	IV	0.70	96	0.0073	0.24
	Ι	0.42	68.1	0.0062	0.26
(00)	II	0.46	78.8	0.0058	0.23
600 nm	III	0.47	85.1	0.0055	0.21
	IV	0.49	86.8	0.0056	0.21
	Ι	0.36	64.6	0.0055	0.25
(50	II	0.37	76	0.0049	0.22
000 nm	III	0.38	83.5	0.0045	0.21
	IV	0.39	83.9	0.0046	0.21

Table S3. PEC Photo-response parameters of $Ga_xSn_{1-x}Se$ -based PEC photodetectors under various wavelengths with different light densities.

		T	Р	R	D*
$Ga_{0.03}Sn_{0.97}Se$	(u.	A cm ⁻²)	$(mW cm^{-2})$	(µA mW-	(10 ⁷ Jones)
	(I)	()	1)	
	Ι	24	361	0.066	3.42
white light	Π	26	398	0.0653	3.35
white light	III	28	431	0.065	3.33
	IV	31	483	0.0663	3.28

365 nm	Ι	5.707	6.21	0.919	34.3
	II	6.1	6.81	0.896	32
	III	6.38	7.38	0.864	31.5
	IV	6.8	7.88	0.863	30.7
	Ι	5.97	62.1	0.096	3.54
120 nm	II	6.63	69.7	0.095	3.43
20 1111	III	8.2	86.8	0.094	3.36
	IV	9.02	96.7	0.093	2.22
	Ι	2.99	66.6	0.045	2.44
75	II	3.5	78.8	0.044	2.4
/ 3 nm	III	3.87	88.1	0.0439	2.34
	IV	4	91.5	0.0437	2.31
	Ι	1.5	68.9	0.022	0.78
20 nm	II	1.6	75	0.0021	0.34
20 1111	III	1.8	89.3	0.02	0.32
	IV	1.9	96	0.0197	0.32
	Ι	0.121	68.1	0.0018	0.04
00 nm	II	0.14	78.8	0.0018	0.04
oo nin	III	0.15	85.1	0.00176	0.03
	IV	0.152	86.8	0.00175	0.03
	Ι	0.37	64.6	0.0057	0.30
50 nm	II	0.38	76	0.005	0.21
650 nm	III	0.415	83.5	0.00497	0.20
	IV	0.416	83.9	0.00496	0.18