Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information

Soft nanocomposites of lead bromide perovskite and polyurethane prepared via coordination chemistry for highly flexible, stable, and quaternary metal alloy-printed light emitting diodes

Ga Eun Kim, Hae-Jin Kim, Heesuk Jung, and Minwoo Park*

G. E. Kim and Prof. M. ParkDepartment of Chemical and Biological EngineeringSookmyung Women's University, Seoul, 04310, Korea

Prof. H. –J. Kim School of Mechanical Engineering,

Yonsei University, Seoul, 03722, Korea

Dr. H. Jung Advanced Photovoltaics Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea

*Corresponding author: M. Park (mwpark@sm.ac.kr)

Figure S1. Br 3d X-ray photoelectron spectra of MAPbBr₃-DMSO and MAPbBr₃-PU-DMSO complex films.

PU concentration	a ₁	$\tau_1[ns]$	a ₂	$\tau_2[ns]$	$\tau_{avg} [ns]^{b)}$
[wt%]					
0	0.734	14.03	0.266	64.23	27.38
0.8	0.749	15.94	0.251	114.1	40.58
1.1	0.716	14.98	0.284	135.6	49.24
1.5	0.705	16.67	0.295	177.4	64.09

Table S1. Time-resolved photoluminescence parameters of perovskite deposited ontoglass/ITO/PEDOT:PSS substrates fitted using biexponential decay function.^{a)}

a)Fit function = $a_1 e^{-t/\tau_1} + a_2 e^{-t/\tau_2}$

$$\tau_{avg} = (\sum_{i} a_i \tau_i \sum_{j \neq i} a_i), where \sum_{i} a_i = 1$$

Figure S2. PLQYs of MAPbBr₃ and MAPbBr3-PU films.

Figure S3. X-ray photoelectron spectra of IGZS displaying (A) In 3d, (B) Ga 2p, (C) Zn 2p, and (D) Sn 3d.

S4. Optical Figure microscopy images droplets (A) of IGZS on glass/ITO/PEDOT:PSS/MAPbBr₃/PCBM, (B) glass/ITO/PEDOT:PSS/MAPbBr3-PU0.8/PCBM, (C) glass/ITO/PEDOT:PSS/MAPbBr₃-PU1.1/PCBM, (D) and glass/ITO/PEDOT:PSS/MAPbBr₃-PU1.5/PCBM.

Figure S5. (A) Luminance–voltage and (B) EQE–voltage curves of MAPbBr₃-PU1.5 device with Ag NW cathode.

Figure S6. SEM image of PEN/ITO substrate at r = 7 mm.

Figure S7. SEM images of (a) PEN/ITO and (b) PEN/ITO/PEDOT:PSS substrates at r = 5 mm.

Figure S8. SEM images of (a) PEN/MAPbBr₃-PU0.8 and (b) PEN/MAPbBr₃-PU1.1 substrates at r = 7 mm.

Figure S9. Optical microscopy images of water droplets on (A) glass/ITO/PEDOT:PSS/MAPbBr₃, (B) glass/ITO/PEDOT:PSS/MAPbBr₃-PU0.8, (C) glass/ITO/PEDOT:PSS/MAPbBr₃-PU1.1, and (D) glass/ITO/PEDOT:PSS/MAPbBr₃-PU1.5.

Figure S10. (A) Luminance-voltage and (B) EL spectra of MAPbBr_{1.5} $I_{1.5}$ and MAPbBr_{1.5} $I_{1.5}$ -PU devices. The inset photograph exhibits the working device at 2.5V. The EL peaks are observed at 689.4 nm.

Figure S11. Photographs of MAPbBr₃ and MAPbBr₃-PU (0.8, 1.1, 1.5, and 1.7 wt%) solutions.

Figure S12. Magnified photograph of MAPbBr₃-PU (1.7 wt%) solution. The PU precipitates form a large lump, separated from the solution.