Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

†Electronic Supplementary Information

For

Development of a multi-responsive fluorescence switch system based

on a pyrimidine functionalized tetrarylethylene compound

Renjie Wang ^{a,b*}, Shunyang Liu^b, Chunhong Zheng^b, Yanqun Mu^b, Mengyuan Li^b, Gang Li ^a,

Shouzhi Pu a,b*

^a Department of Ecology and Environment, Yuzhang Normal University, Nanchang 330103,

China

^bJiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal

University, Nanchang 330013, P. R. China

*Corresponding author 1: E-mail address: bio-wrj@163.com

*Corresponding author 2: E-mail address: pushouzhi@tsinghua.org.cn

1. Experimental section

1.1 General methods

All the chemicals and reagents used for the synthesis of **1** and **2** were purchased from a variety of commercial sources without further purification. ¹H NMR and ¹³C NMR spectra were measured on Bruker AV500 (500 MHz) spectrometer, using CDCl₃ as the solvent and TMS as the internal standard. Agilent 1100 ion trap MSD spectrometer was used for mass spectrometry. UV/Vis spectra were tested on Agilent 8454 spectrophotometer. Fluorescence spectra were captured by a Hitachi F–4600 spectrophotometer. Quantum yield was measured with Hamamatsu Absolute PL Quantum Yield Spectrometer C11347-11. WRS-1B melting point apparatus was used to gained the melting point. The UV and visual light sources were irradiated with MUA-165 and MVL-210, respectively. Luminescent decay experiments were determined by Edinburgh FLS 980 spectrophotometer.

1.2 Synthesis

The synthetic route of **TPT-2-PAo** and **BTPT-2-PAo** are shown in Scheme S1. First of all, compound **1** was synthesized by the method reported [1]. Then, the target molecules **TPT-2-PAo** and **BTPT-2-PAo** were synthesized by one-pot condensation reaction.

Scheme S1. The synthetic route of TPT-2-PAo and BTPT-2-PAo.

1.2.1 Synthesis of 4-methyl-6-(2-(4-(1,2,2-triphenylvinyl)thiophene-2-yl)vinyl)pyrimidine-2amine (TPT-2-PAo)

4-(1, 2, 2-Triphenylvinyl)thiophene-2-carbaldehyde (1, 1.00 g, 2.70 mmol) and TBAHS (0.92 g, 2.70 mmol) were put into a 100 mL three-necked flask, with 80 mL 5M sodium hydroxide. Then, argon was fed into and stirred, 4,6-dimethylpyrimidin-2-amine (2, 0.67 g, 5.40 mmol) were added after 5 min. The reaction was heated reflux for 5 h at 120 °C. Subsequently, the crude products were dissolved in dichloromethane, and extracted. It was dried with anhydrous sodium sulfate and then purified by column chromatography. In the first place, petroleum ether and ethyl acetate (v:v = 5:1) was used as the eluate to obtained crude product TPT-2-PAo, then dichloromethane and ethyl acetate (v:v = 10:1) mixed solvent as the eluate continue to separated and obtained crude product BTPT-2-PAo. After that, two products were recrystallized with *n*-hexane and dried. The last, a light yellow solid is the target product TPT-2-PAo (0.40 g, 0.85 mmol) in 31% yield. M. p.: 196–197 °C. ¹H NMR (500 MHz, CDCl₃): δ 2.26 (s, 3H), 4.98 (s, 2H), 6.36 (s, 1H), 6.44 (d, J =20.0 Hz, 1H), 6.59 (s, 1H), 6.64 (s, 1H), 6.91 (t, *J* = 5.0 Hz, 2H), 7.00–7.03 (m, 4H), 7.06 (d, *J* = 5.0 Hz, 5H), 7.14 (d, J = 10.0 Hz, 3H), 7.19 (s, 1H), 7.54 (d, J = 15.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃, ppm): $\delta = 22.76$, 108.14, 123.72, 125.44, 125.71, 126.00, 126.58, 126.66, 126.74, 127.08, 128.30, 129.71,130.08, 130.13, 131.17, 133.80, 138.57, 140.15, 141.84, 142.12, 142.60, 143.85, 161.37, 161.92, 167.13 (Fig. S1). HRMS-ESI (m/z): $[M + H]^+$ Calcd. For $(C_{31}H_{25}N_3S^+)$, 472.1769, found: 472.1828 (Fig. S2A).

1.2.2 4,6-Bis-2-(4-(1,2,2-triphenylvinyl)thiophen-2-yl)vinyl)pyrimidine-2-amine (BTPT-2-PAo)

BTPT-2-PA (0.35 g, 0.43 mmol) was recrystallization from dichloromethane, yielding 16%. M.

p.:141–142°C · ¹H NMR (500 MHz, CDCl₃): δ 4.90 (s, 2H), 6.47 (s, 1H), 6.53 (d, J = 15.0 MHz, 2H), 6.65 (s, 2H), 6.71 (s, 2H), 6.99 (t, J = 5.0 MHz, 4H), 7.07–7.10 (m, 10H), 7.14 (d, J = 5.0 MHz, 10H), 7.22 (t, J = 5.0 MHz, 6H), 7.61 (d, J = 15.0 MHz, 2H). ¹³C NMR (126 MHz, CDCl₃, ppm): $\delta = 107.01$, 123.97, 125.43, 125.71, 126.01, 126.58, 126.74, 127.08, 128.00, 129.71, 130.09, 130.14, 131.12, 133.81, 138.64, 140.13, 141.85, 142.14, 142.60, 143.85 (Fig. S3). HRMS-ESI (m/z): $[M + H]^+$ Calcd. For (C₅₆H₄₂N₃S₂⁺), 820.2820, found: 820.2695 (Fig. S2B).

Figure S1. NMR spectra data for TPT-2-PAo in CDCl₃: (A) ¹H-NMR spectrum; (B) ¹³C-NMR

spectrum.

Figure S2. (A) HRMS-ESI spectra of TPT-2-PAo in methanol and (B) BTPT-2-PAo in

acetonitrile.

Figure S3. NMR spectra data for BTPT-2-PAo in CDCl₃: (A) ¹H-NMR spectrum; (B) ¹³C-NMR

spectrum.

Figure S4. (A) Photograph showing the color changes of TPT-2-PAo, and (B) BTPT-2-PAo in different solvents (($\lambda_{ex} = 365 \text{ nm}$).

Figure S5. (A) The absorption and PL spectra of TPT-2-PAo and BTPT-2-PAo in solid states,

and (B) fluorescence decay cures of them in solid states.

Figure S6. Changes of absorption and PL spectra for TPT-2-PAo and BTPT-2-PAo in THF/H₂O $(C = 2.0 \times 10^{-5} \text{ mol } \text{L}^{-1})$ mixtures with different fractions: (A) absorption spectra for BTPT-2-PAo, (B) PL intensity for BTPT-2-PAo, (C) absorption spectra for TPT-2-PAo, and (D) PL

intensity for TPT-2-PAo.

Figure S7. Changes in absorption (A) and fluorescence (B) spectra for TPT-2-PAo by photoirradiation with UV and visible in hexane ($C = 2.0 \times 10^{-5} \text{ mol } \text{L}^{-1}$) at room temperature (inset: color changes by photoirradiation).

Figure S8. Changes in absorption spectral for **TPT-2-PAo** (A) and **BTPT-2-PAo** (B) by photoirradiation with UV and visible light at room temperature in PMMA films (inset: color changes by photoirradiation).

Figure S9. Fatigue resistance of **TPT-2-PAo** and **BTPT-2-PAo** upon alternating irradiation with UV and visible light: (A) and (B) in THF, (C) and (D) in PMMA film.

Figure S10. Comparison of ¹H NMR spectra of TPT-2-PAo (A) and BTPT-2-PAo (B) in CDCl₃

before and after UV irradiation (insets: corresponding structures).

Figure S11. Absorption spectral and color changes of TPT-2-PAo by HCl/NaOH stimuli in THF

 $(C = 2.0 \times 10^{-5} \text{ mol } \text{L}^{-1}).$

Figure S12. (A) Changes in absorption spectral of TPT-2-PAo', and (B) BTPT-2-PAo' by photoirradiation with UV and visible light in *n*-hexane ($C = 2.0 \times 10^{-5} \text{ mol } \text{L}^{-1}$) at room temperature (inset: color changes by photoirradiation), (C) and (D) color changes for their closed-ring isomers by stimuli with acid/base and UV light.

Figure S13. Structural, fluorescence and color changes between BTPT-2-PAo, and BTPT-2-

PAo' induced by base and light.

Figure S14. Changes in ¹H NMR spectra of **TPT-2-PAo** (A) and **BTPT-2-PAo** (B) stimuli by different H⁺ concentration in THF-*d*₈.

Figure S15. Absorption / PL spectra and color changes of TPT-2-PAo in various pH values solutions: (A) absorption spectra, (B) PL spectra (λ_{ex} = 360 nm), and (C) changes of the absorbance spectra of TPT-2-PAo with increasing pH from 1.0 to 11.0: sigmoidal fitting of the pH-dependent absorbance intensity at 400 nm.

Figure S16. Changes in the absorption of TPT-2-PAo induced by various metal ions (5.0 equiv) in THF ($C = 2.0 \times 10^{-5} \text{ mol } \text{L}^{-1}$): (A) absorption spectra, (B) photos of color changes.

Figure S17. Competitive test showing the absorbance response of BTPT-2-PAo to different metal ions (20.0 equiv.) in THF ($C = 2.0 \times 10^{-5} \text{ mol } \text{L}^{-1}$). Black bars: BTPT-2-PAo with various metal ions; red bars: BTPT-2-PAo with different competing metal ions and Al³⁺ (A), Cr³⁺ (B), and Fe³⁺

(C).

Figure S18. Competitive test showing the absorbance response of TPT-2-PAo to different metal ions (5.0 equiv.) in THF ($C = 2.0 \times 10^{-5} \text{ mol } \text{L}^{-1}$). Black bars: **TPT-2-PAo** with various metal ions; red bars: TPT-2-PAo with different competing metal ions and Al³⁺(A), Cr³⁺ (B), and Fe³⁺

Figure S19. Absorption spectral changes of **BTPT-2-PAo** ($C = 2.0 \times 10^{-5} \text{ mol } \text{L}^{-1}$) by stimulation with metal ions: (A) Al³⁺ (inset: the effect of Al³⁺ concentration on absorption intensity at 467 nm), and (B) Fe³⁺ (inset: the effect of Fe³⁺ concentration on absorption intensity at 465 nm).

Figure S20. PL intensity changes of BTPT-2-PAo ($C = 2.0 \times 10^{-5} \text{ mol } \text{L}^{-1}$) by stimulation with metal ions: (A) Al³⁺, and (B) Fe³⁺ (inset: the effect of Cr³⁺ concentration on emission intensities of BTPT-2-PAo at 482 nm. I₀: initial emission intensity of BTPT-2-PAo, I: emission intensity of BTPT-2-PAo in the presence of Al³⁺ and Fe³⁺).

Figure S21. Changes in ¹H NMR spectra of BTPT-2-PAo stimuli by different Cr³⁺ concentration

in THF- d_8 (A), and HRMS-ESI spectra of [**BTPT-2-PAo**+Cr³⁺] in acetonitrile (B).

Figure S22. Job's plot for BTPT-2-PAo with $Al^{3+}(A)$, and $Fe^{3+}(B)$.

Spectrum from 220920pos-40彻页3Al.wiff (sample 1) - Sample012, +TOF MS (150 - 1600) from 0.191 min

(B)

Mass/Charge, Da

• ≠ ≥ ■ = 200,

Figure S23. HRMS-ESI spectra of $[BTPT-2-PAo + Al^{3+}]$ (A) and $[BTPT-2-PAo + Fe^{3+}]$ (B) in

acetonitrile.

Figure S24. (A) The binding constant for **BTPT-2-PAo** with Al³⁺ was calculated to be 4.09×10^3 L mol⁻¹, (B) the limit of detection (LOD), LOD is 4.80×10^{-8} mol L⁻¹, (C) The binding constant for **BTPT-2-PAo** with Fe³⁺ was calculated to be 1.33×10^3 L mol⁻¹, and (D) the limit of detection (LOD), LOD is 3.60×10^{-8} mol L⁻¹.

Figure S25. Absorption spectral changes of **TPT-2-PAo** by stimulation with metal ions in THF ($C = 2.0 \times 10^{-5} \text{ mol } \text{L}^{-1}$): (A) Cr³⁺, (B) Al³⁺, and (C) Fe³⁺((inset: the effect of Cr³⁺ concentration on absorption intensity of **TPT-2-PAo** at 410 nm, A₀: initial absorption intensity of **TPT-2-PAo**, A: absorption intensity of **BTPT-2-PAo** in the presence of M³⁺).

Figure S26. Job's plot for **TPT-2-PAo** with $Al^{3+}(A)$, $Cr^{3+}(B)$, and $Fe^{3+}(C)$.

Figure S27. Hildebrand-Benesi plot based on the 1:1 ratio between TPT-2-PAo and M³⁺ (M = Al, Cr, Fe): (A) the binding constant for TPT-2-PAo with Cr³⁺ was calculated to be 7.21 × 10⁴ L mol⁻¹; (B) the binding constant for TPT-2-PAo with Al³⁺ was calculated to be 1.22 × 10⁵ L mol⁻¹; (C) the binding constant for TPT-2-PAo with Fe³⁺ was calculated to be 1.49 × 10⁵ L mol⁻¹.

Figure S28. (A) The limit of detection (LOD) of TPT-2-PAo with Cr³⁺, LOD is 1.88 × 10⁻⁸ mol L⁻¹; (B) the limit of detection (LOD) of TPT-2-PAo with Al³⁺, LOD is 5.42 × 10⁻⁷ mol L⁻¹; (C) the limit of detection (LOD) of TPT-2-PAo with Fe³⁺, LOD is 1.54 × 10⁻⁶ mol L⁻¹.

Figure S29. HRMS-ESI spectra of [TPT-2-PAo+M³⁺] in acetonitrile: (A) [TPT-2-PAo+Cr³⁺], (B) [TPT-2-PAo+Al³⁺], and (C) [TPT-2-PAo+Fe³⁺].

Figure S30. The color changes of TPT-2-PAo and BTPT-2-PAo under various stimuli including

UV, EDTA and metal ions.

TPT-2-PAo	<i>n</i> -hex	EA	THF	DCM	DMSO	DMF	MeCN	MeOH
Δf^{a}	0.001	0.201	0.21	0.218	0.263	0.274	0.307	0.309
$\lambda_{abs} (nm)^b$	315	311	320	316	314	311	310	314
$\lambda_{em} (nm)^c$	480	484	470	523	505	487	532	563
Stokes (nm) ^d	165	173	150	207	191	176	222	249
Φ^e	0.034	0.014	0.009	0.006	0.014	0.01	0.003	0.015
ε (mol ⁻¹ L cm ⁻	2 2 104	2.2.104	0.7.104	2 0104	2 1104	2 1104	0.0.104	2 1104
¹)f	3.3× 104	3.2×10 ⁴	2.7×10 ⁴	3.0×104	3.1×104	3.1×10 ⁴	2.9×10 ⁴	3.1×10 ⁴

Table S1. The characteristics of TPT-2-PAo in different solvents.

^a Directed polarizability (Δf); ^b maximum absorption wavelength; ^c maximum emission wavelength; ^d Stokes

displacement (nm); ^e fluorescence quantum yield; ^f molar extinction coefficient.

BTPT-2-PAo	<i>n</i> -hex	EA	THF	DCM	DMSO	DMF	MeCN	MeOH
Δf^{a}	0.001	0.201	0.21	0.218	0.263	0.274	0.307	0.309
$\lambda_{abs}(nm)^b$	309	312	314	311	315	312	314	313
$\lambda_{\rm em}({\rm nm})^c$	469	479	482	518	500	499	531	544
Stokes(nm) ^d	160	167	168	207	185	187	217	231
Φ^e	0.043	0.065	0.077	0.053	0.055	0.034	0.038	0.017
$\varepsilon (\mathrm{mol}^{-1}\mathrm{L}\mathrm{cm}^{-1})^{f}$	5.5×10 ⁴	5.8×10 ⁴	5.9×10 ⁴	5.7×10 ⁴	5.6×10 ⁴	5.3×10 ⁴	5.2×10 ⁴	5.6×10 ⁴

Table S2. The characteristics of BTPT-2-PAo in different solvents.

^a Directed polarizability (Δf); ^b maximum absorption wavelength; ^c maximum emission wavelength; ^d Stokes

displacement (nm); ^e fluorescence quantum yield; ^f molar extinction coefficient.

рН	1	2	3	4	5	6	7	8	9	10	11
$\lambda_{abs} (nm)^a$	348	344	344	337	337	337	313	313	314	313	312
$\lambda_{\rm em} ({\rm nm})^b$	645	639	637	627	628	626	470	481	485	504	506
Stokes (nm) ^c	297	295	293	290	291	289	157	168	171	191	194
$arPsi^d$	0.001	0.007	0.01	0.043	0.041	0.048	0.009	0.024	0.021	0.028	0.034
ε (mol ⁻¹ L	3.6 ×	3.3 ×	3.4 ×	3.4 ×	3.3 ×	3.1 ×	2.8 ×	3.1 ×	3.4 ×	3.7 ×	4.6 ×
$\mathrm{cm}^{-1})^e$	10	10	10	10	10	10.	10	10	10	10	10

Table S3. Photophysical properties of TPT-2-PAo aggregates at different pH.

^a Maximum absorption wavelength; ^b maximum emission wavelength; ^c Stokes displacement (nm); ^d fluorescence quantum yield; ^e molar extinction coefficient.

рН	1	2	3	4	5	6	7	8	9	10	11
$\lambda_{abs}(nm)^a$	465	465	465	465	463	465	313	313	313	313	313
$\lambda_{\rm em} ({\rm nm})^b$	606	607	630	630	620	621	482	485	489	493	493
Stokes (nm) ^c	141	142	165	165	157	156	169	172	176	180	180
$arPsi^d$	0.003	0.009	0.005	0.008	0.012	0.011	0.077	0.069	0.064	0.061	0.075
$\varepsilon (\mathrm{mol}^{-1}\mathrm{L}$	4.6 × 10 ⁴	4.7×10^4	4.5×10^4	4.6 × 104	4.5 × 104	4.5 × 10 ⁴	5.3 × 10 ⁴	5.4 × 10 ⁴	5.6 × 10 ⁴	5.9 × 10 ⁴	6.6 × 10 ⁴

Table S4. Photophysical properties of BTPT-2-PAo aggregates at different pH.

^a Maximum absorption wavelength; ^b maximum emission wavelength; ^c Stokes displacement (nm); ^d fluorescence quantum yield; ^e molar extinction coefficient.

С	-7.41174	0.11846	-0.66001
С	-7.13019	-1.18151	-0.23571
С	-5.81689	-1.64744	-0.2311
С	-4.75699	-0.81675	-0.63003
С	-5.05601	0.48352	-1.06823
С	-6.36913	0.94652	-1.08212
С	-3.3615	-1.33065	-0.62751
С	-3.18736	-2.69742	-1.18708
С	-2.31031	-0.60248	-0.14826
С	-2.50613	0.63672	0.65453
С	-0.9022	-0.99395	-0.37676
С	-1.78337	1.804	0.36052
С	-1.9662	2.96372	1.11141
С	-2.86082	2.9715	2.18348
С	-3.56915	1.8101	2.4991
С	-3.39288	0.65438	1.74209
С	-2.45203	-3.67382	-0.49623
С	-2.28698	-4.95047	-1.02832
С	-2.85629	-5.27603	-2.26126
С	-3.60505	-4.31931	-2.95033
С	-3.77839	-3.04542	-2.41242
С	-0.53306	-2.13702	-1.05317
S	1.18213	-2.34309	-1.15044
С	1.44991	-0.86346	-0.23488
С	0.24857	-0.28061	0.09452
С	2.76071	-0.36772	0.1053
С	3.94052	-0.94456	-0.20562
С	5.26421	-0.43071	0.13895
Ν	6.29465	-1.19964	-0.25773
С	7.52646	-0.75446	0.04838
Ν	7.83737	0.36795	0.72058
С	6.80036	1.12778	1.10788
С	5.48253	0.77091	0.83421

Table S5. Symbolic Z-Matrix of TPT-2-PAo.

С	7.14045	2.38801	1.85661
Ν	8.57658	-1.51072	-0.40202
Н	-8.43573	0.48101	-0.66929
Н	-7.93461	-1.83533	0.08976
Н	-5.60159	-2.66177	0.09113
Н	-4.24907	1.13008	-1.39607
Н	-6.57957	1.9549	-1.42746
Н	-1.08214	1.79858	-0.46845
Н	-1.40835	3.86154	0.86008
Н	-2.99991	3.87361	2.77248
Н	-4.25814	1.80298	3.33905
Н	-3.94694	-0.24606	1.98589
Н	-2.00611	-3.4201	0.45998
Н	-1.71475	-5.69269	-0.47898
Н	-2.72456	-6.27049	-2.67804
Н	-4.05722	-4.56651	-3.90683
Н	-4.36724	-2.30451	-2.94485
Н	-1.19016	-2.86727	-1.50424
Н	0.18839	0.6384	0.664
Н	2.74514	0.56618	0.66378
Н	3.96453	-1.87941	-0.76107
Н	4.66353	1.40162	1.15712
Н	6.24301	2.93636	2.15535
Н	7.72463	2.14859	2.75192
Н	7.76223	3.04029	1.23329
Н	9.46774	-1.34407	0.04284
Н	8.36269	-2.46503	-0.6537

Table S6. Total energies of TPT-2-PAo.

Zero-point correction	0.479514 (Hartree/Particle)
Thermal correction to Energy	0.509779
Thermal correction to Enthalpy	0.510724
Thermal correction to Gibbs Free Energy	0.413522
Sum of electronic and zero-point Energies	-1758.475125
Sum of electronic and thermal Energies	-1758.444860
Sum of electronic and thermal Enthalpies=	-1758.443916
Sum of electronic and thermal Free Energies=	-1758.541117

С	1.85442	1.83709	0
С	2.78108	2.51303	0.68862
С	3.53975	1.88071	1.59842
С	3.39922	0.57476	1.92624
С	2.51981	-0.08151	1.13192
С	1.74647	0.52073	0.21447
С	4.18359	-0.05026	2.85243
С	4.08165	-1.3901	3.05633
С	5.03357	0.57104	3.71945
С	4.82466	1.82484	4.19317
С	5.9857	-0.16911	4.33487
С	5.85691	2.64033	4.5002
С	5.66412	3.88101	4.97486
С	4.42055	4.34558	5.16331
С	3.38032	3.55471	4.86773
С	3.58243	2.3164	4.39056
С	2.89071	-1.96033	3.33126
С	2.75336	-3.2353	3.7312
С	3.79649	-4.05044	3.94735
С	5.04651	-3.61842	3.74246
С	5.31705	-2.2505	3.18802
С	6.48086	-1.45854	3.75869
S	7.36765	-2.08067	5.18415
С	7.25066	-0.93361	6.10307
С	6.49184	0.04212	5.56699
С	7.79598	-0.95857	7.33557
С	8.57796	-1.93814	7.83205
С	9.15696	-1.94514	9.05005
Ν	9.85196	-2.92614	9.45305
С	10.38496	-2.92914	10.60505
Ν	10.26196	-1.96214	11.41805
С	9.58696	-0.94714	11.08605
С	9.00096	-0.89814	9.88105

 Table S7. Symbolic Z-Matrix of TPT-2-PAc.

С	9.48296	0.15586	12.10905
Ν	11.06396	-3.94014	10.95805
Н	1.23545	2.3399	-0.76133
Н	2.93533	3.58571	0.48196
Н	4.32104	2.51899	2.035
Н	2.38574	-1.17288	1.16651
Н	1.03273	-0.06829	-0.38695
Н	6.90137	2.32861	4.32417
Н	6.52973	4.52725	5.20065
Н	4.25815	5.36256	5.55769
Н	2.35318	3.92036	5.0324
Н	2.68851	1.69719	4.20215
Н	1.96398	-1.36021	3.32687
Н	1.74237	-3.61735	3.9588
Н	3.62563	-5.07562	4.31509
Н	5.89551	-4.3032	3.90733
Н	7.23322	-1.21322	2.96897
Н	6.217	0.92373	6.16129
Н	7.59393	-0.09887	8.00085
Н	8.77668	-2.81859	7.19942
Н	8.41096	-0.01214	9.60205
Н	8.69496	0.89586	11.84405
Н	9.22796	-0.24914	13.11505
Н	10.44996	0.70286	12.18605
Н	11.51496	-3.96914	11.90505
Н	11.17896	-4.75614	10.30705
Н	5.07295	-2.11736	4.22126

 Table S8. Total energies of TPT-2-PAc.

Zero-point correction	0.480458 (Hartree/Particle)
Thermal correction to Energy	0.509974
Thermal correction to Enthalpy	0.510918
Thermal correction to Gibbs Free Energy	0.416849
Sum of electronic and zero-point Energies	-1758.445479
Sum of electronic and thermal Energies	-1758.415963
Sum of electronic and thermal Enthalpies=	-1758.415019
Sum of electronic and thermal Free Energies=	-1758.509088

С	-2.81395	-0.67442	0
С	-3.83061	-0.66347	-0.87299
С	-3.97323	0.36226	-1.72705
С	-3.12397	1.41325	-1.7495
С	-2.10596	1.36696	-0.8612
С	-1.95065	0.34999	0.00124
С	-3.25573	2.44593	-2.62726
С	-4.47232	2.79475	-3.12585
С	-2.14227	3.13334	-3.0093
С	-0.99323	2.44753	-3.25193
С	-2.20439	4.48034	-3.15034
С	0.23535	2.97894	-3.08141
С	1.36076	2.28664	-3.32564
С	1.2933	1.01936	-3.7515
С	0.0892	0.45519	-3.91672
С	-1.0248	1.16132	-3.66843
С	-4.59717	3.38681	-4.33284
С	-5.78341	3.76512	-4.83376
С	-6.9064	3.56407	-4.13313
С	-6.81592	2.98674	-2.92769
С	-5.62306	2.61016	-2.44171
С	-3.24467	5.29683	-2.90228
S	-2.98652	6.7177	-3.13492
С	-1.57075	6.59457	-3.50061
С	-1.20694	5.30234	-3.51674
С	-0.72157	7.60628	-3.76429
С	-1.01276	8.92211	-3.78242
С	-0.11276	9.91311	-3.95842
Ν	-0.47676	11.08311	-4.27642
С	0.37524	11.99911	-4.49042
Ν	1.62324	11.80111	-4.39642
С	2.08224	10.66811	-4.05842
С	1.20424	9.67611	-3.82342

Table S9. Symbolic Z-Matrix of BTPT-2-PAo.

C	3.40924	10.45211	-3.94942
Ν	-0.03476	13.15611	-4.81542
С	3.97485	9.28143	-3.5969
С	5.29195	9.01943	-3.50425
S	6.39194	9.95809	-3.75814
С	7.49044	9.03402	-3.47134
С	7.11586	7.79532	-3.11029
С	5.77367	7.8171	-3.14334
С	7.93328	6.76655	-2.77459
С	9.28405	6.95393	-2.80598
С	7.43609	5.55995	-2.39441
С	10.0791	5.94577	-3.25615
С	9.8095	8.13446	-2.38301
С	8.11749	4.76453	-1.54121
С	7.65673	3.56782	-1.14497
С	6.48091	3.11619	-1.60163
С	5.78623	3.87365	-2.46063
С	6.26209	5.06899	-2.84485
С	11.3503	5.7765	-2.83147
С	12.12698	4.76944	-3.26004
С	11.65288	3.88031	-4.14261
С	10.39407	4.01617	-4.57976
С	9.62906	5.02656	-4.13941
С	10.96515	8.6327	-2.87278
С	11.47636	9.80689	-2.4671
С	10.83319	10.53146	-1.54282
С	9.68143	10.06883	-1.03814
С	9.18287	8.89486	-1.45802
Н	-2.68923	-1.51451	0.70272
Н	-4.54093	-1.50805	-0.89713
Н	-4.79822	0.27099	-2.45217
Н	-1.37359	2.18833	-0.7801
Н	-1.11344	0.35681	0.72049
Н	0.37279	3.99176	-2.67061
Н	2.34574	2.7531	-3.15738

 Н	2.21169	0.44524	-3.95513
Н	0.01626	-0.58722	-4.26993
Н	-1.9766	0.64176	-3.86931
Н	-3.72348	3.56495	-4.98137
Н	-5.83818	4.24721	-5.82513
Н	-7.88283	3.88313	-4.53225
Н	-7.72836	2.84739	-2.32452
Н	-5.62659	2.20209	-1.41658
Н	-4.20869	4.99453	-2.4706
Н	-0.1928	4.97531	-3.78966
Н	0.32243	7.30932	-3.9676
Н	-2.06199	9.22562	-3.61797
Н	1.56524	8.67411	-3.53942
Н	4.07422	11.30917	-4.15264
Н	0.65324	13.92811	-4.99842
Н	-1.06176	13.35211	-4.90242
Н	3.30168	8.44448	-3.33963
Н	8.52754	9.37046	-3.60407
Н	5.11827	6.9823	-2.86091
Н	9.0722	5.08772	-1.09125
Н	8.23755	2.95785	-0.43317
Н	6.0974	2.13309	-1.28196
Н	4.83101	3.50009	-2.8666
Н	5.66723	5.60225	-3.60452
Н	11.79344	6.43095	-2.06163
Н	13.15541	4.65936	-2.87419
Н	12.2849	3.0498	-4.49693
Н	9.9918	3.29404	-5.31118
Н	8.61653	5.08894	-4.57279
Н	11.51587	8.12142	-3.67973
Н	12.41486	10.18637	-2.90844
Н	11.24256	11.49757	-1.20654
Н	9.14711	10.65422	-0.26903
Н	8.24815	8.56129	-0.97666

Zero-point correction	0.809478 (Hartree/Particle)
Thermal correction to Energy	0.861108
Thermal correction to Enthalpy	0.862052
Thermal correction to Gibbs Free Energy	0.711823
Sum of electronic and zero-point Energies	-3118.728500
Sum of electronic and thermal Energies	-3118.676870
Sum of electronic and thermal Enthalpies=	-3118.675926
Sum of electronic and thermal Free Energies=	-3118.826155

Table S10. Total energies of BTPT-2-PAo.

С	1.0775	1.94707	0
С	0.0495	1.18807	-0.412
С	-1.2025	1.67807	-0.528
Ν	-1.3645	2.98507	-0.227
С	-0.3475	3.75507	0.189
Ν	0.8825	3.23707	0.308
С	-2.2665	0.94807	-0.949
С	-3.0685	1.47807	-1.923
С	-2.4885	-0.30193	-0.458
Ν	-2.7085	2.54807	-2.681
С	-4.1835	0.81607	-2.306
С	-3.7785	-1.03893	-0.74
С	-3.5455	-2.49093	-1.007
С	-2.6135	-3.08493	-0.246
С	-1.8015	-2.33393	0.52
С	-1.7075	-0.99393	0.402
С	-3.6325	3.45407	-3.072
С	-3.3175	4.53107	-3.807
С	-2.0485	4.74007	-4.184
С	-1.1095	3.85907	-3.816
С	-1.4405	2.78707	-3.078
С	-4.7985	0.86007	-3.506
С	-5.7875	-0.02893	-3.733
С	-5.9755	-0.93793	-2.589
С	-4.8315	-0.19893	-1.428
С	-6.4755	-0.07393	-4.89
С	-7.4815	-0.91593	-5.204
С	-8.1615	-0.91293	-6.37
С	-9.1775	-1.77293	-6.577
С	-9.8535	-1.73493	-7.74
С	-9.4855	-0.88093	-8.603
С	-8.5215	-0.08793	-8.383
С	-7.8735	-0.09693	-7.294

Table S11. Symbolic Z-Matrix of BTBT-2-PAc.

S	-10.9035	-2.51993	-8.066
С	-17.69416	-9.78328	-9.97713
С	-16.72858	-8.89486	-10.26391
С	-16.23382	-8.00847	-9.3676
С	-16.90571	-7.99838	-8.1935
С	-17.87349	-8.87418	-7.87816
С	-18.26318	-9.79653	-8.76597
С	-15.2695	-7.09503	-9.68205
С	-14.70497	-6.20995	-8.8098
С	-14.69367	-7.0808	-10.91136
С	-14.52207	-6.50726	-7.49854
С	-14.11872	-5.09891	-9.31347
С	-14.44228	-5.78601	-11.64843
С	-13.34466	-5.88339	-12.66725
С	-12.87692	-7.07615	-13.05633
С	-13.28885	-8.20092	-12.45431
С	-14.12412	-8.2004	-11.40154
С	-14.54679	-5.56002	-6.53671
С	-14.36027	-5.85578	-5.24037
С	-14.13752	-7.12172	-4.86388
С	-14.10564	-8.08269	-5.79677
С	-14.2967	-7.77418	-7.0894
С	-13.12495	-4.36141	-8.77692
С	-12.60571	-3.37317	-9.53315
С	-13.26551	-3.30318	-10.84923
S	-14.4759	-4.61112	-10.68448
С	-11.58465	-2.54628	-9.22804
С	-8.1965	0.74707	-9.282
Н	-12.6965	-4.5984	-7.79485
Н	-11.27459	-1.82871	-10.00704
Н	-11.2199	-3.22505	-7.27853
Н	-9.4425	-2.48493	-5.782
Н	-4.4865	1.53407	-4.318
Н	-6.1855	0.67507	-5.648
Н	-7.7895	-1.66093	-4.451

Н	-15.49184	-4.1528	-10.62115
Н	-5.4335	0.39207	-0.691
Н	2.0925	1.51907	0.06
Н	0.2915	0.15907	-0.726
Н	-2.3605	3.46007	-0.277
Н	-0.5215	4.81507	0.439
Н	1.7245	3.86607	0.641
Н	-4.2395	-3.07893	-1.625
Н	-2.5125	-4.18293	-0.255
Н	-1.0645	-2.85793	1.155
Н	-0.8595	-0.54493	0.937
Н	-4.6865	3.36507	-2.753
Н	-4.0985	5.25707	-4.091
Н	-1.7825	5.62307	-4.789
Н	-0.0645	4.01007	-4.134
Н	-0.6265	2.07807	-2.858
Н	-18.047	-10.48951	-10.74768
Н	-16.39039	-8.93219	-11.30985
Н	-16.73095	-7.23536	-7.41934
Н	-18.37784	-8.81861	-6.89842
Н	-19.06927	-10.50861	-8.52663
Н	-13.00382	-4.97119	-13.18245
Н	-12.12338	-7.12948	-13.86066
Н	-12.8352	-9.15684	-12.7731
Н	-14.22447	-9.16679	-10.87663
Н	-14.77507	-4.50801	-6.77874
Н	-14.40492	-5.05834	-4.47969
Н	-13.98349	-7.37069	-3.8006
Н	-13.91201	-9.12768	-5.50062
Н	-14.22104	-8.60469	-7.81334
Н	-7.4025	1.41407	-9.123
Н	-8.7185	0.77507	-10.192
Н	-4.21111	-1.09698	0.23692
Н	-15.31898	-5.65027	-12.24667

 Table S12. Total energies of BTPT-2-PAc.

Zero-point correction	0.811868 (Hartree/Particle)
Thermal correction to Energy	0.861819
Thermal correction to Enthalpy	0.862763
Thermal correction to Gibbs Free Energy	0.719522
Sum of electronic and zero-point Energies	-3118.633682
Sum of electronic and thermal Energies	-3118.583731
Sum of electronic and thermal Enthalpies=	-3118.582787
Sum of electronic and thermal Free Energies=	-3118.726028