Electronic Supplementary Information for Solvent-induced luminescence behavior of Ce/Eu@Gd-MOF for ratiometric detection for D₂O in H₂O

Xiaoxuan Fan,^a Zhiqiang Guo,^a Xiaokun Wen,^b Wen Liu,^a Baijie Guan,^a Feifei Yin,^a Xia Hong,^b Tianya Tan,^a Kexin Wang,^{a,*} Jiwei Wang,^{a,*}

^a College of Physics, Liaoning University, Shenyang, 110036, China

^b Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, 130024, China

E-mail: wyf93jl@163.com (Kexin Wang); wangjiwei@lnu.edu.cn (Jiwei Wang)

Emission spectra of Eu@Gd-MOF and Ce/Eu@Gd-MOF

Fig. S1 (a) Emission spectra of $Eu_x@Gd_{1-x}$ -MOFs (x = 0.002, 0.005, 0.01, 0.02) samples ($\lambda_{ex} = 260$ nm). (b) The comparison of the luminescence intensity between Eu^{3+} doped and Ce^{3+}/Eu^{3+} co-doped in Gd-MOFs

Fig. S1a depicts the emission spectra of sample $Eu_x@Gd_{1-x}$ -MOFs (x = 0, 0.002, 0.005, 0.01, 0.02) and Ce_{0.01}/Eu_x@Gd_{0.99-x}-MOFs (x = 0.002, 0.005, 0.01, 0.02) under the same texting conditions. Fig. S1b shows the luminescence of the samples at 617 nm, where the emission intensity of the Eu@Gd-MOFs samples are lower than Ce_{0.01}/Eu@Gd-MOFs, due probably to the energy transfer between the Ce³⁺ and the

Eu³⁺ units.

Emission intensity at 617 nm of Ce/Eu@Gd-MOFs in sovlents

Fig. S2 Emission intensity at 617 nm of Ce/Eu@Gd-MOFs dispersing in H₂O and D_2O

Energy transfer efficiency of Ce/Eu@Gd-MOFs in H₂O and D₂O

Fig. S3 Energy transfer efficiency of Ce/Eu@Gd-MOFs in H₂O and D₂O.

Selectivity of Ce/Eu@Gd-MOFs for D₂O detection

Fig. S4 Emission intensity at 316 nm and 617 nm of Ce/Eu@Gd-MOF dispersion in the presence of other common species (Na⁺, K⁺, Ca²⁺, Mg²⁺, Zn²⁺, methanol, ethanol and acetone). The ion concentration is 1 mM.