Supplemental materials for "Intrinsic Ferromagnetism with High Curie Temperature in Two Dimensional $X \operatorname{Cr} Y_3$ (X = Al, Ga, In; Y = S, Se, Te) Monolayers." In this Supplemental Material we provide (1) the phonon spectra and the MD simulation results for all XCr Y_3 (X=Al, Ga, In; Y=S, Se, Te) monolayers, (2) the electronic band structures and PDOSs of all XCr Y_3 monolayers, (3) the top and side view of deformation charge density distribution of the AlCrS₃ monolayer, (4) the orbital-projected contribution to MAE from the SOC interaction, (5) Magnetic moment and specific heat capacity as a function of temperature by Monte Carlo simulations, and (6) the total energies per cell of monolayer XCr Y_3 with different magnetic configurations at the GGA+ U level.

Figures S1 and S2 shows that the studied $XCrY_3$ monolayers are kinetically anddynamically stable.

Figure S1. The phonon spectra of all $X Cr Y_3$ (X=A1, Ga, In; Y=S, Se, Te) monolayers.

Figure S2. Results of molecular dynamics imulations of all XCr Y_3 (X=Al, Ga, In; Y=S, Se, Te) monolayers, as well as the final structures after being heated at 300K for 5ps inserted.

Figure S3. Band structures of all XCr Y_3 (X=Al, Ga, In; Y=S, Se, Te) monolayers under HSE06 calculation methods. Blue and red lines represent up and down spin, respectively.

Figure S4. Total DOS and corresponding PDOS of monolayer AlCrS₃, AlCrSe₃, AlCrTe₃, GaCrS₃, GaCrSe₃, GaCrTe₃, InCrS₃, InCrSe₃, InCrTe₃, respectively. The vertical dashed line represents the Fermi level which is set as zero.

Figure S5. The (a) top and (b) side view of deformation charge density distribution of the AlCrS₃ monolayer. The value of the isosurface is 0.003 e/bohr^3 . The silver, blue and yellow balls represent Al, Cr and S atoms, respectively.

Figure S6. (a)-(i) are the orbital-projected contribution to MAE from the SOC interaction forAlCrS₃, AlCrSe₃, AlCrTe₃, GaCrS₃, GaCrSe₃, GaCrTe₃, InCrS₃, InCrSe₃, InCrTe₃, respectively.

Figure S7. Magnetic moment and specific heat capacity as a function of temperature by Monte Carlo simulations.

Table S1. The total energies per cellof monolayer $XCrY_3$ with different magnetic configurations at the GGA+ U level, including FM, zigzag AFM (z-AFM), stripe

XCrY ₃	$E_{\rm FM}/{\rm e}$	E_{z-AFM}	<i>E</i> _{s-}	E _{n-}
	V	/eV	$_{AFM}/eV$	_{AFM} /eV
AlCrS ₃	-27.72	-27.62	-27.61	-27.60
AlCrSe ₃	-24.99	-24.87	-24.86	-24.85
AlCrTe ₃	-22.09	-22.05	-22.02	-22.03
GaCrS ₃	-25.94	-25.85	-25.84	-25.83
GaCrSe ₃	-23.53	-23.47	-23.44	-23.43
GaCrTe 3	-21.01	-20.99	-20.97	-20.98
InCrS ₃	-25.07	-24.90	-24.90	-24.89
InCrSe ₃	-22.92	-22.78	-22.77	-22.76
InCrTe ₃	-20.59	-20.52	-20.50	-20.50

AFM (s-AFM), and 120° noncollinear AFM (n-AFM).