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Fig. S1. EPMA study of bulk T-silicate showing (a) Weight % distribution of oxide 

compound contribution, and (b) Cations present normalized by 29.5 oxygen atoms.

Table S1: EPMA study of bulk T-silicate showing weight % distribution of oxide compound 

contributions.

Oxide Average (wt. %) St Dev

SiO2 35.5 0.2

TiO2 0.3 0.02

Al2O3 34.6 0.2

B2O3 10.3 0.4

Cr2O3 0.004 0.006

FeO 13.0 0.1

MnO 0.4 0.02

MgO 0.9 0.03

CaO 0.08 0.02

Na2O 2.8 0.2

K2O 0.04 0.01

F 0.08 0.07



Table S2: EPMA study of bulk T-silicate showing the number of cations present normalized 

by 29.5 oxygen atoms.

Cation normalized to 29.5 oxygen atoms

Si 5.9

Ti 0.04

Al 6.8

B 3.0

Cr 0.001

Fe 1.8

Mn 0.05

Mg 0.2

Ca 0.01

Na 0.9

K 0.009

Anions

F 0.04

OH 2.9



Table S3: Zeta potential series data of T-silicates in IPA.

Temperatur

e

°C Mean zeta 

potential

mV

Distribution 

peak

mV

Conductivity

(mS/cm) x 10-4 Electrophoretic 

mobility

(µm x cm/Vs)

Processed 

runs

30 -29.9 -31.1 5.99 -0.28 1000

30 -28.4 -10.4 5.94 -0.26 1000

30 -30.1 -12.4 5.82 -0.28 200

30 -30.6 -17.7 5.86 -0.28 140

Fig. S2. Deconvoluted XPS spectra of (a) Si 2p and (b) O 1s spectra of 2D T-silicate.



Fig. S3. EDS analysis of 2D T-silicate coated cotton fabric.

  

Fig. S4. Optical images of 2D T-silicate coated cotton fibers.



Fig. S5. FTIR comparative analysis of T-silicate coated cotton fabric and only fabric.

Fig. S6. Tapping of T-silicate-fabric device real-time response image showing glow of a blue 
LED.



Fig. S7. Digital image of the 3D printer (Hyrel) with T-silicate/CMC ink in the syringe and 

freshly printed film on the print bed.

Fig. S8. Digital image of mesh film CMC-TS device mounted on the glove during 

measurement, the schematic at right shows the electrode design.



Fig. S9. (a) Capacitance at room temperature for T-silicate-CMC device at variable 

frequency. (b) Dissipation graph of the fabricated device from T-silicate-CMC, and (c) The 

dielectric constant value of the device as a function of the frequency.
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Fig. S10. Size distribution graph of particle diameter of exfoliated tourmaline obtained with 

particle size analyzer.

Fig. S11. KPFM obtained (a-b) height profile image and graph of marked  T-silicate particle, (c) 

schematic of KPFM-based electronic bands between tip and sample. (d) potential image and (e) 

potential graph showing CPD value.



The work function is a property of materials that determines how easily electrons can be 

emitted from them. A lower work function means electrons can move between energy bands 

more easily. Figure S11(a-b) shows the data taken with KPFM to observe the work function 

of the material. During the experiments, the surface potential could not be measured for 

thinner sheets due to resolution issues. Therefore, a thicker particle/ agglomerated particle 

was used to measure the work function. Figure S11(e) shows the measured contact potential 

difference (CPD) of sample ~0.47V. Subtracting this from the tip work function (~6.6V), we 

get the work function of the sample to be ~6.2V. Fermi level alignment is introduced by 

electrical contact between the tip and the sample via current flow i, which causes an offset in 

the vacuum levels Ev and the contact potential difference VCPD (shown schematically in 

Figure S11(c)). A work function greater than 6 volts indicates a relatively high energy barrier 

for electron emission. This is due to the high dielectric nature of the silicate, which makes the 

flow of electrons difficult. In the context of piezoelectric/flexoelectric materials, the work 

function can affect the charge distribution and polarization of the material in response to 

mechanical stress. The work function of this type of material may be lowered after applying 

mechanical stress.

Table S4: comparison of theoretical piezoelectric constant of different nanomaterials 

including this work

Material Formula Theoretical piezoelectric 
constant (pm/V or 

pC/N)

Reference

PVDF (CH
2
CF

2
)n d

31 
= 28 S1

Zinc oxide ZnO d
33 

= 12 S1

Barium titanate 
(single 

crystalline)

BaTiO
3

d
15 

= 587 S1

Barium titanate 
(polycrystalline)

BaTiO
3

d
15 

= 270 S1

Quartz SiO
2

d
11 

= 2.3 S1

2D Tourmaline Na(Fe
2+

2
Al)

Σ=3
Al

6
(Si

6
O

18
)(B

O
3
)
3
(OH)

3
O

d
11 

= 2.0 This work
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