Supporting Information

3D-Printed Flexible Energy Harvesting Devices using Non-layered Two-Dimensional Tourmaline Natural Silicates

Preeti Lata Mahapatra^{a†}, Raphael Tromer^{b†}, Anjali Jayakumar^{a,c}, Gelu Costin^d, Basudev Lahiri^e, Rahul R. Nair^c, Debmalya Roy^f, Ajit K. Roy^g, Prafull Pandey^h, Douglas S. Galvao^{b*}, Chandra Sekhar Tiwary^{i*}

^aSchool of Nano Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal-721302 India

^bApplied Physics Department, State University of Campinas, Campinas, SP, 13083-970, Brazil

Email:

^cDepartment of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL, United Kingdom

^dDepartment of Earth, Environmental and Planetary Sciences, Rice University, Houston, Texas 77005, United States

^eDepartment of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India

^fDirectorate of Nanomaterials, Defence Materials and Stores Research and Development Establishment (DMSRDE), Kanpur, Uttar Pradesh 208013

^gMaterials and Manufacturing Directorate, Air Force Research Laboratory, Wright Patterson AFB, OH 45433-7718, USA

^hMaterials Engineering, Indian Institute of Science, Bangalore, India-560012

ⁱMetallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India

*Corresponding author E-mail: <u>chandra.tiwary@metal.iitkgp.ac.in</u> (C. S. Tiwary), <u>galvao@ifi.unicamp.br (D. S. Galvao)</u>

Fig. S1. EPMA study of bulk T-silicate showing (a) Weight % distribution of oxide compound contribution, and (b) Cations present normalized by 29.5 oxygen atoms.

Oxide	Average (wt. %)	St Dev	
SiO ₂	35.5	0.2	
TiO ₂	0.3	0.02	
Al ₂ O ₃	34.6	0.2	
B ₂ O ₃	10.3	0.4	
Cr ₂ O ₃	0.004	0.006	
FeO	13.0	0.1	
MnO	0.4	0.02	
MgO	0.9	0.03	
CaO	0.08	0.02	
Na ₂ O	2.8	0.2	
K ₂ O	0.04	0.01	
F	0.08	0.07	

Table S1: EPMA study of bulk T-silicate showing weight % distribution of oxide compound contributions.

Cation normalized to 29.5 oxygen atoms		
Si	5.9	
Ti	0.04	
Al	6.8	
В	3.0	
Cr	0.001	
Fe	1.8	
Mn	0.05	
Mg	0.2	
Са	0.01	
Na	0.9	
K	0.009	
Anions		
F	0.04	
ОН	2.9	

Table S2: EPMA study of bulk T-silicate showing the number of cations present normalizedby 29.5 oxygen atoms.

Temperatur					
e			Conductivity		Processed
°C	Mean zeta	Distribution	(mS/cm) x 10 ⁻⁴	Electrophoretic	runs
	potential	peak		mobility	
	mV	mV		(µm x cm/Vs)	
30	-29.9	-31.1	5.99	-0.28	1000
30	-28.4	-10.4	5.94	-0.26	1000
30	-30.1	-12.4	5.82	-0.28	200
30	-30.6	-17.7	5.86	-0.28	140

Table S3: Zeta potential series data of T-silicates in IPA.

Fig. S2. Deconvoluted XPS spectra of (a) Si 2p and (b) O 1s spectra of 2D T-silicate.

Fig. S3. EDS analysis of 2D T-silicate coated cotton fabric.

Fig. S4. Optical images of 2D T-silicate coated cotton fibers.

Fig. S5. FTIR comparative analysis of T-silicate coated cotton fabric and only fabric.

Fig. S6. Tapping of T-silicate-fabric device real-time response image showing glow of a blue LED.

Fig. S7. Digital image of the 3D printer (*Hyrel*) with T-silicate/CMC ink in the syringe and freshly printed film on the print bed.

Fig. S8. Digital image of mesh film CMC-TS device mounted on the glove during measurement, the schematic at right shows the electrode design.

Fig. S9. (a) Capacitance at room temperature for T-silicate-CMC device at variable frequency. (b) Dissipation graph of the fabricated device from T-silicate-CMC, and (c) The dielectric constant value of the device as a function of the frequency.

Fig. S10. Size distribution graph of particle diameter of exfoliated tourmaline obtained with particle size analyzer.

Fig. S11. KPFM obtained (a-b) height profile image and graph of marked T-silicate particle, (c) schematic of KPFM-based electronic bands between tip and sample. (d) potential image and (e) potential graph showing CPD value.

The work function is a property of materials that determines how easily electrons can be emitted from them. A lower work function means electrons can move between energy bands more easily. Figure S11(a-b) shows the data taken with KPFM to observe the work function of the material. During the experiments, the surface potential could not be measured for thinner sheets due to resolution issues. Therefore, a thicker particle/ agglomerated particle was used to measure the work function. Figure S11(e) shows the measured contact potential difference (CPD) of sample ~ 0.47 V. Subtracting this from the tip work function (~ 6.6 V), we get the work function of the sample to be ~6.2V. Fermi level alignment is introduced by electrical contact between the tip and the sample via current flow i, which causes an offset in the vacuum levels Ev and the contact potential difference V_{CPD} (shown schematically in Figure S11(c)). A work function greater than 6 volts indicates a relatively high energy barrier for electron emission. This is due to the high dielectric nature of the silicate, which makes the flow of electrons difficult. In the context of piezoelectric/flexoelectric materials, the work function can affect the charge distribution and polarization of the material in response to mechanical stress. The work function of this type of material may be lowered after applying mechanical stress.

 Table S4: comparison of theoretical piezoelectric constant of different nanomaterials

 including this work

Material	Formula	Theoretical piezoelectric constant (pm/V or pC/N)	Reference
PVDF	(CH ₂ CF ₂)n	$d_{31} = 28$	S1
Zinc oxide	ZnO	$d_{33} = 12$	S1
Barium titanate (single crystalline)	BaTiO ₃	$d_{15} = 587$	S1
Barium titanate (polycrystalline)	BaTiO ₃	$d_{15} = 270$	S1
Quartz	SiO2	$d_{11} = 2.3$	S1
2D Tourmaline	$Na(Fe^{2+}_{2}Al)_{\Sigma=3}Al_{6}(Si_{6}O_{18})(B)_{3}O($	d ₁₁ = 2.0	This work

Supporting References

[S1] N. SC, Abrahams; N, Concise encyclopedia of advanced ceramic materials, 1991.