## **Supporting Information for**

## Controlling Electron Transfer in a Lateral Near-Infrared Polymer Photodetector by Adding Higher-LUMO-Level Acceptors: A Technique to Reduce Dark Current

Tao Han<sup>\*,1,2</sup>, Xiaoting Li<sup>1</sup>, Junjie Zhang<sup>1</sup>, Wenjun Tang<sup>1</sup>, Sirong Jiang<sup>1</sup>, Changle Pan<sup>1</sup>, Yue Qian<sup>1</sup>, Shufang Ding<sup>1</sup>, Yaqi Chen<sup>1</sup>, Chunzhi Jiang<sup>1</sup>

<sup>1</sup> Microelectronics and Optoelectronics Technology Key Laboratory of Hunan Higher Education, School of Physics and Electronic Electrical Engineering, Xiangnan University, Chenzhou 423000, P. R. China.

<sup>2</sup> Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application, Xiangnan University, Chenzhou 423000, P. R. China.

\* Corresponding authors: Tao Han (<u>than@xnu.edu.cn</u>).



Supplementary Fig. 1 Structure of TPBi:PC<sub>61</sub>BM:PDPP3T L-PPD.



Supplementary Fig. 2 UV-vis absorption spectra of different films.



Supplementary Fig. 3 TEM of different films.



Supplementary Fig. 4 AFM of films with different ratios. a 0:1:0:1. b 1:3:0:3.



Supplementary Fig. 5 AFM of films with different ratios. a 0:1:1:3. b 1:2:2:6.



Supplementary Fig. 6 Structures of phototransistors. a Si/SiO<sub>2</sub>/OTS/TPBi:PDPP3T:PC<sub>61</sub>BM device. b Si/SiO<sub>2</sub>/OTS/TPBi:PDPP3T:PS:PC<sub>61</sub>BM device.





Supplementary Fig. 7 Electrical properties of phototransistors with different doping ratios. Output curve a and transfer curve b of Si/SiO<sub>2</sub>/OTS/PDPP3T:PC<sub>61</sub>BM device with 1:1 ratio. Output curve c and transfer curve d of Si/SiO<sub>2</sub>/OTS/PDPP3T:PS:PC<sub>61</sub>BM device with 1:1:3 ratio. Output transfer curve е and curve f of Si/SiO<sub>2</sub>/OTS/TPBi:PDPP3T:PS:PC<sub>61</sub>BM device with 1:2:2:6 ratio. The light intensity is 0.13 mW/cm<sup>2</sup> @ 850 nm. The transfer curves were tested with V<sub>d</sub> = -30 V.  $\Delta$  V<sub>th</sub> is response window of device.



Supplementary Fig. 8 /-Time curves of TPBi:PDPP3T:PS:PC61BM L-PPDs with

different doping ratios exposed to the 850 nm laser. a PDPP3T:PC<sub>61</sub>BM L-PPD with 1:1 ratio. b TPBi:PDPP3T:PC<sub>61</sub>BM L-PPD with 1:3:3 ratio. c PDPP3T:PS:PC<sub>61</sub>BM L-PPD with 1:1:3 ratio. d TPBi:PDPP3T:PS:PC<sub>61</sub>BM L-PPD with 1:2:2:6 ratio. The bias were added at a constant V = -20 V during the *I*-Time curves tested.



Supplementary Fig. 9 Electrical properties of TPBi:PDPP3T:PS:PC61BM L-PPDs with

different doping ratios exposed to the 405 nm and 850 nm laser. a Dependence of *R* on light intensity at 405 nm laser. b Dependence of EQE on light intensity at 405 nm laser.
c Dependence of *R* on light intensity at 850 nm laser. d Dependence of EQE on light intensity at 850 nm laser.



Supplementary Fig. 10 *I-V* curves and *I*-Time curves of TPBi:PDPP3T:PS:PC<sub>61</sub>BM L-PPDs exposed to the different wavelength of laser. a, b *I-V* curves and *I*-Time

curves of PDPP3T:PC<sub>61</sub>BM L-PPD with 1:1 ratio. **c**, **d** *I*-*V* curves and I-Time curves of TPBi:PDPP3T:PC<sub>61</sub>BM L-PPD with 1:3:3 ratio. **e**, **f** *I*-*V* curves and I-Time curves of PDPP3T:PS:PC<sub>61</sub>BM L-PPD with 1:1:3 ratio. **g**, **h** *I*-*V* curves and I-Time curves of TPBi:PDPP3T:PS:PC<sub>61</sub>BM L-PPD with 1:2:2:6 ratio. The bias were added at a constant *V* = -20 V during the I-Time curves tested. The light intensity is 4.5 mW/cm<sup>2</sup> @ 850 nm.



Supplementary Fig. 11 Electrical properties of TPBi:PDPP3T:PS:PC<sub>61</sub>BM L-PPDs with different doping ratios exposed to the different wavelength of laser. a Dependence of R on wavelength. b Dependence of EQE on wavelength. c Dependence of D\*<sub>shot</sub> on wavelength. The light intensity is 4.5 mW/cm<sup>2</sup>.



Supplementary Fig. 12 *I-V* curves and *I*-Time curves of TPBi:PDPP3T:PC<sub>61</sub>BM L-PPDs exposed to the 405 nm laser. a, b 1:1:1 ratio. c, d 1:5:5 ratio. e, f 1:7:7 ratio. g,

**h** 1:10:10 ratio. The bias were added at a constant V = -20 V during the I-Time curves tested.



Supplementary Fig. 13 The dark current of TPBi:PDPP3T:PC<sub>61</sub>BM L-PPDs.





Supplementary Fig. 14 *I-V* curves and *I*-Time curves of TPBi:PDPP3T:PS:PC<sub>61</sub>BM L-PPDs exposed to the 405 nm laser. a, b 1:0.6:0.6:2 ratio. c, d 1:3:3:9 ratio. e, f 1:4:4:12 ratio. g, h 1:6:6:18 ratio. The bias were added at a constant V = -20 V during the I-Time curves tested.



Supplementary Fig. 15 The dark current of TPBi:PDPP3T:PS:PC<sub>61</sub>BM L-PPDs.



Supplementary Fig. 16 *I-V* curves and *I*-Time curves of different L-PPDs exposed to the 405 nm laser. a, b PDPP3T L-PPD. c, d TPBi:PDPP3T L-PPD with 1:3 ratio. e, f TPBi:PDPP3T:PS L-PPD with 1:3:3 ratio. The bias were added at a constant V = -20 V during the *I*-Time curves tested.



Supplementary Fig. 17 Electrical properties of different L-PPDs exposed to the 405 nm laser. a Dark current. b Dependence of dark current and  $\Delta I_{ph}$  on different doping ratios.



Supplementary Fig. 18 *I-V* curves and *I*-Time curves of TPBi:IDT-BT:PS:PC<sub>61</sub>BM L-PPDs exposed to the 405 nm laser. a, b 0:1:1:3 ratio. c, d 1:2:2:6 ratio. The bias were added at a constant V = -20 V during the I-Time curves tested.



Supplementary Fig. 19 The dark current of TPBi:IDI-BT:PS:PC<sub>61</sub>BM L-PPDs.



Supplementary Fig. 20 /-V curves and /-Time curves of TPBi/PDPP3T:PC61BM (1:1)

L-PPD exposed to the 405 nm laser. a *I-V* curves. b *I*-Time curves. The bias were added

at a constant V = -20 V during the *I*-Time curves tested.





PDPP3T:PC<sub>61</sub>BM and PDPP3T:PS:PC<sub>61</sub>BM L-PPDs. **b** TPBi:PDPP3T:PC<sub>61</sub>BM and TPBi:PDPP3T:PS:PC<sub>61</sub>BM L-PPDs. The light intensity is 10.42 mW/cm<sup>2</sup> @ 405 nm.

|                     | UV-vis absorption                  |                                     |                          | UPS                                 |                                 |                                     |  |
|---------------------|------------------------------------|-------------------------------------|--------------------------|-------------------------------------|---------------------------------|-------------------------------------|--|
|                     | $\lambda_{ m onset}( m nm)^{ m a}$ | Eg <sup>opt</sup> (eV) <sup>b</sup> | E <sub>Cutoff</sub> (eV) | E <sub>V</sub> -E <sub>F</sub> (eV) | <i>Е</i> номо (eV) <sup>с</sup> | E <sub>LUMO</sub> (eV) <sup>d</sup> |  |
| PDPP3T              | 961                                | 1.29                                | 17.93                    | 2.00                                | 5.29                            | 4.00                                |  |
| PC <sub>61</sub> BM | 623                                | 1.99                                | 18.35                    | 3.25                                | 6.12                            | 4.13                                |  |
| ТРВі                | 362                                | 3.42                                | 18.46                    | 3.52                                | 6.28                            | 2.86                                |  |

 Table S1. Summary of the UV-vis spectra and UPS analysis.

<sup>a</sup> the absorption onset wavelength of the film, <sup>b</sup> optical bandgap calculated via  $\lambda_{onset}$ , <sup>c</sup> HOMO levels obtained by the  $E_{Cutoff}$  and  $E_{V}$ - $E_{F}$  values, <sup>d</sup> LUMO levels determined by the  $E_{HOMO}$  and  $E_{g}^{opt}$ .