Supporting Information

2D/1D PbI₂/Sb₂S₃ van der Waals Heterojunction for Highly Sensitive and Broadband Photodetectors

Shili Fu^{1,⊥}, Xiaohui Liu^{1,⊥}, Jiaxiu Man¹, Quanhong Ou¹, Xiaolu Zheng¹, Zhiyong Liu^{1,2}, Ting Zhu^{1,2,*}, Hong-En Wang^{1,2,*}

¹ College of Physics and Electronic Information, Yunnan Normal University, 650500 Kunming, Yunnan, China. E-mail: <u>hongen.wang@ynnu.edu.cn; zhut0002@ynnu.edu.cn</u>

² Yunnan Key Laboratory of Optoelectronic Information Technology, Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials, Ministry of Education, Yunnan Normal University, 650500 Kunming, Yunnan, China. E-mail: <u>hongen.wang@outlook.com</u>

 $^{\perp}$ Shili Fu and Xiaohui Liu contributed equally to this work.

Figure S1. Schematic synthesis routes of (a) PbI₂ nanosheets and (b) Sb₂S₃ microrods, respectively.

Figure S2. Schematic fabrication procedure of the $2D/1D PbI_2/Sb_2S_3$ heterojunction device.

Figure S3. SEM image of a PbI_2 nanosheet (a) and corresponding EDX analysis result of I and Pb elements (b) from a spot selected from the near center region (red circle), showing the atomic ratio of Pb : I is near to 1 : 2.

Figure S4. (a) Optical microscopy image of the PbI_2 nanosheets with a broad size dispersion; (b) statistical distribution of the lateral sizes of PbI_2 nanosheets.

Figure S5. (a) AFM and (b) KPFM images of a selected rectangular area with a size of $3 \times 3 \ \mu m^2$ from a PbI₂ nanosheet, validating its relatively uniform surface and surface work function distribution.

Figure S6. (a) SEM image of Sb_2S_3 microrods; (b) statistical size distribution of length of Sb_2S_3 microrods.

Figure S7. KPFM image of a selected rectangular area measuring $3 \times 3 \ \mu m^2$ from a Sb_2S_3 microrod.

Figure S8. Time-resolved PL (TRPL) spectra of the PbI₂ nanosheets.

Figure S9. (a) SEM micrograph and (b) corresponding EDX mapping of Pb, I, Sb, and S elements in a $2D/1D PbI_2/Sb_2S_3$ heterojunction.

Figure S10. SEM images of (a) a PbI_2 and (b) Sb_2S_3 microrod photodetector device, respectively.

Figure S11. Current-voltage (*I-V*) curves of the PbI_2/Sb_2S_3 photodetector devices measured under dark and (a) 445 nm and (b) 730 nm light illumination, respectively; *I-V* curves of the (c) PbI_2 nanosheet and (d) Sb_2S_3 microrod photodetector devices measured under 445 nm and 730 nm illumination, respectively.

Figure S12. (a) Time-dependent photocurrent and (b) time response curves of an individual PbI_2 nanosheet device measured at 3 V bias under 445 nm monochromatic light.

Figure S13. Energy band structure of the PbI_2/Sb_2S_3 heterostructure (black curve) with the respective contribution of (a) Pb (blue spheres), (b) I (red spheres), (c) Sb (green spheres), and (d) S (yellow spheres) element highlighted for clarity.