Electronic Supplementary Information

Nanocrystals of Divalent Europium-Doped CsPbCl₃ Perovskite: A Novel Optoelectronic Material with Dual-Emissions

He Yuan¹, Shilin Jin¹, Song Zheng¹, Rong Xie¹, Tao Pang², Bin Zhuang¹, Feng

Huang¹, Daqin Chen^{1, 3, 4, *}

¹College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian 350117, P.

R. China

E-mail: dqchen@fjnu.edu.cn (D. Q. Chen)

²Huzhou Key Laboratory of Materials for Energy Conversion and Storage, College of Science, Huzhou University, Zhejiang, Huzhou 313000, P. R. China

³Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, Fujian 350117, P. R. China

⁴Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou, Fujian 350117, P. R. China

Figure S1 (a) XRD patterns of Eu: CsPbCl₃ samples prepared with different Eu doping concentrations. **(b-d)** Crystallite sizes evaluated from XRD results using the Scherrer equation for different crystalline planes.

Figure S2 (a) TEM image and **(b)** size distribution of the pristine CsPbCl₃ PeNCs. **(c)** HRTEM micrograph and **(d)** the corresponding FFT image showing atomic lattice fringes. **(e)** EDX mapping of the pristine CsPbCl₃ PeNCs.

Figure S3 Typical EDX analyses of **(a)** the undoped and **(b)** Eu-doped CsPbCl₃ (red circle represents the presence of Eu element).

Figure S4 HRXPS profiles of Cs $(3d_{3/2}, 3d_{5/2})$ energy states from the un-doped CsPbCl₃ and Eu-doped CsPbCl₃ PeNCs.

Figure S5 Two-dimensional excitation-emission mapping for (a) the CsPbCl₃ and (b)

Eu: CsPbCl₃ PeNCs.

Figure S6 (a) PL spectra for the broadband Eu²⁺ emission of the Eu: CsPbCl₃ PeNCs prepared with different amounts of Eu concentrations. **(b)** PL spectra recorded by a FLS1000 spectrofluorometer equipped with an integrating sphere to determine PLQY.

Figure S7 CIE color coordinates for the Eu: CsPbCl₃ samples, showing that the emitting color of the product changes from blue to orange upon increase of Eu doping content.

Figure S8 (a) Power-dependent PL spectra of the Eu: CsPbCl₃ sample and (b) the integrated PL intensity versus excitation power. The red line is a linear fitting.

Figure S9 The variation of PL intensity with the elongation of decay time.

Figure S10 Pump-probe fs-TA spectra of (a) the CsPbCl₃ and (b) Eu: CsPbCl₃ PeNCs at different delay times.

Figure S11 Normalized temperature-dependent (11~300 K) PL spectra of the Eu: CsPbCl₃ PeNCs.

With elevation of temperature, host PL (i.e. exciton emission) quenches faster than Eu^{2+} emission owing to low exciton binding energy, which leads to the observed weak host PL and strong Eu^{2+} emission at room temperature.

Figure S12 Temperature-dependent PL decay curves for **(a)** the CsPbCl₃ and **(b)** Eu: CsPbCl₃ PeNCs.

Figure S13 Integrated PL intensity of exciton recombination for the Eu: CsPbCl₃ sample as a function of temperature, which is used to evaluate exciton binding energy.

Figure S14 Orbital projected band structures and VBM/CBM orbital arrangements of CsEuCl₃. The green, orange, blue, and yellow colors represent the Cl-3p, Eu-4f, Cs-4d and Eu-4d states, respectively.

Figure S15 Projected DOS for CsEuCl₃.

Table S1 The calculated values of several key parameters for centroid shift and crystal

Parameter	Value
$R(Eu^{2+})$ (ppm)	117
$R(Pb^{2+}) (ppm)$	118
R(Eu-Cl) (ppm)	286
R(Eu-O) (ppm)	240
χ _{Cs}	0.79
Хрь	2.33
χ _{av}	1.82
αCl sp (10-30 m ³)	2.46
αο sp (10 ⁻³⁰ m ³⁾	1.78
$\varepsilon_{c}(eV)$	0.75
$\epsilon_{cfs}(eV)$	0.81
D (eV)	1.16
$E_x(eV)$	3.06
$E_m(eV)$	2.22