Lasing in perovskite crystallites grown via silvernanowire-induced nucleation

Bin Liu, Junhan Guo, Yang Tang, Liang Qin*, Zhidong Lou, Yufeng Hu, Feng Teng

and Yanbing Hou*

Key Laboratory of Luminescence and Optical Information Ministry of Education

Beijing JiaoTong University

Beijing 100044, P. R. China.

E-mail address: qinliang@bjtu.edu.cn; ybhou@bjtu.edu.cn

Figure S1. (a) and (b) Microscopy photographs of MAPbBr₃ crystallites grown on primary Ag nanowires.

Figure S2. Microscopy photographs (a, b) and SEM images (c, d) of MAPbBr₃ crystallites with large aspect ratios. MAPbBr₃ crystallites grown on silver nanowires with diameters of 60 nm (a, c) and 90 nm (b, d), respectively.

Figure S3. Microscopy photographs (a-c) and SEM image (d) of MAPbBr₃ rod-shaped crystallite grown on silver nanowires with diameters of 30 nm and 120 nm.

Figure S4. Microscopy photographs (a) and fluorescence microscopy images (b) of MAPbBr₃ crystallites with aspect ratio of about 1 (The concentration of precursor solution is 0.01 mmol/ml). Microscopy photograph (c) and SEM image (d) of single square MAPbBr₃ crystal.

Figure S5. Element distribution of MAPbBr₃ crystal in Figure S4d.

Figure S6. The schematic diagram for laser performance test of MAPbBr₃ crystallites.

Active Material	Threshold	Pump Pulse Length	Reference
FAPbI ₃	$3 \ \mu J \ cm^{-2}$	150 fs	1
FAPbI ₃	$19.5 \ \mu J \ cm^{-2}$	5 ns	1
MAPbI ₃	$12 \ \mu J \ cm^{-2}$	150 fs	2
MAPbI ₃	54.1 μ J cm ⁻²	5 ns	3
CsPbBr ₃	$3.3 \ \mu J \ cm^{-2}$	150 fs	4
CsPbBr ₃	$64.9 \ \mu J \ cm^{-2}$	5.5 ns	4
MAPbBr ₃	$15 \ \mu J \ cm^{-2}$	80 fs	5
MAPbBr ₃	$14 \ \mu J \ cm^{-2}$	5 ns	this work

Table S1. Laser thresholds of perovskite materials under different Pump pulse lengths

Figure S7. The stability of MAPbBr₃ crystallite under the continuous irradiation of a 450 nm pulsed laser (5 ns, 10 Hz) in air.

Figure S8 (a) Pump intensity-dependent PL spectra of a MAPbBr₃ square crystallite embedded with silver nanowires excited at 450 nm (10 Hz, 5 ns); (b) PL intensity and FWHM as functions of pump intensity; (c) Gaussian fitting of a lasing peak at 548 nm, giving an FWHM of 0.54 nm, corresponding to a Q factor of 997. (d) The spacing $\Delta\lambda$ between the two modes is calculated and plotted as a function of the reciprocal of the total internal reflection path L $(L=2\sqrt{2}W)$.

References

- 1. F. Yuan, Z. Wu, H. Dong, J. Xi, K. Xi, G. Divitini, B. Jiao, X. Hou, S. Wang and Q. Gong, *The Journal of Physical Chemistry C*, 2017, **121**, 15318-15325.
- 2. G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Gratzel, S. Mhaisalkar and T. C. Sum, *Nat Mater*, 2014, **13**, 476-480.
- 3. L. Qin, L. Lv, Y. Ning, C. Li, Q. Lu, L. Zhu, Y. Hu, Z. Lou, F. Teng and Y. Hou, *RSC Advances*, 2015, **5**, 103674-103679.
- 4. L. Zhang, F. Yuan, H. Dong, B. Jiao, W. Zhang, X. Hou, S. Wang, Q. Gong and Z. Wu, *ACS Applied Materials & Interfaces*, 2018, **10**, 40661-40671.
- 5. S. Zhang, Q. Shang, W. Du, J. Shi, Z. Wu, Y. Mi, J. Chen, F. Liu, Y. Li, M. Liu, Q. Zhang and X. Liu, *Advanced Optical Materials*, 2017, **6**.