Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Impact of substituent position on crystal structure and photoconductivity in 1D and 2D lead(II) benzenethiolate coordination polymers

Ryohei Akiyoshi,*a Akinori Saeki,^b Kazuyoshi Ogasawara,^a Daisuke Tanaka*a

^a Department of Chemistry, School of Science, Kwansei Gakuin University, 1 Gakuen, Sanda, Hyogo 669-1337, Japan

^b Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

Table of Contents

Fig. S1. SEM textures	S3
Table S1. Crystallographic data	S4
Fig. S2. Asymmetric units	S5
Fig. S3. Pb–S and Pb–O bond length	S6
Fig. S4. Coordination mode of SPhOMe anions	S7
Fig. S5. Crystal structures focusing on the (-Pb–S–) _n network	S8
Fig. S6. Packing structures	S9
Fig. S7. Dinuclear coordination unit of KGF-33	S10
Fig. S8. Interlayer distance between 2D layers for KGF-34	S10
Fig. S9. PXRD patterns of pure products	S11
Fig. S10. TGA results	S12
Fig. S11. Chemical stability toward water, 1 M HCl aq., and 1 M NaOH aq	S13
Fig. S12. Chemical stability toward organic solvent	S14
Fig. S13. PYS results	S15
Fig. S14. TRMC results for KGF-32 and KGF-33	S16
Table S2. TRMC results obtained for photoconductive S-CPs	S16
Fig. S15. Mapping of VBM and CBM for KGF-32	S17
Fig. S16. Mapping of VBM and CBM for KGF-33	S18
Fig. S17. Mapping of VBM and CBM for KGF-34	S19
Reference	

Fig. S1. SEM textures of (a) KGF-32, (b) KGF-33, and (c) KGF-34.

Compound	KGF-32	KGF-33	KGF-34
Formula	$C_{14}H_{14}O_2PbS_2$	$C_{14}H_{14}O_2PbS_2$	$C_{14}H_{14}O_2PbS_2$
Formula weight	485.56	485.56	485.56
T / K	150	150	150
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	$P2_{1}/c$	$P2_{1}/c$	P2/n
<i>a</i> / Å	9.5333 (3)	4.1327 (2)	7.6715 (4)
b/Å	19.6388 (5)	31.0738 (11)	5.1900 (2)
<i>c</i> / Å	7.7462 (3)	11.0299 (4)	34.4254 (13)
α / deg	90	90	90
eta / deg	95.886 (3)	95.467 (4)	90.992 (4)
γ / deg	90	90	90
$V/Å^3$	1456.28	1410.00 (10)	1370.44 (10)
Ζ	4	4	4
$ ho_{ m calc}$ / g cm $^{-3}$	2.236	2.287	12.609
μ / mm ⁻¹	11.987	12.255	12.609
F_{000}	912.0	912.0	912.0
$R_1 (I > 2\sigma(I))$	0.0194	0.0370	0.0344
R_1 (all data)	0.0234	0.0430	0.0425
$wR_2 (I > 2\sigma(I))$	0.0456	0.0874	0.0855
wR_2 (all data)	0.0474	0.0907	0.0906
GOF	1.030	1.079	1.122
CCDC number	2308865	2308866	2308867

 Table S1. Crystallographic data for KGF-32, KGF-33, and KGF-34.

Fig. S2. Asymmetric units of (a) KGF-32, (b) KGF-33, and (c) KGF-34.

Fig. S3. Pb–S and Pb–O bond lengths of (a) KGF-32, (b) KGF-33, and (c) KGF-34.

Fig. S4. Coordination mode of SPhOMe⁻ anions of (a) KGF-32, (b) KGF-33, and (c) KGF-34.

Fig. S5. Crystal structures focusing on the $(-Pb-S-)_n$ network in (a) **KGF-32**, (b) **KGF-33**, and (c) **KGF-34**. Pb–S bond is colored purple.

Fig. S6. Packing structures of (a) KGF-32, (b) KGF-33, and (c) KGF-34.

Fig. S7. Dinuclear coordination unit of KGF-33.

Fig. S8. Interlayer distance between 2D layers for KGF-34.

Fig. S9. PXRD patterns of (a) KGF-32, (b) KGF-33, and (c) KGF-34 (red: Experimental, blue: Simulation).

Fig. S10. TGA results for KGF-32 (red), KGF-33 (blue), and KGF-34 (green) in the temperaturerange30-600°Cat10°C min^{-1} .

Fig. S11. Chemical stability of (a) KGF-32, (b) KGF-33, and (c) KGF-34 toward water, 1 M HCl aq, and 1 M NaOH aq.

Fig. S12. Chemical stability of (a) KGF-32, (b) KGF-33, and (c) KGF-34 toward various organic solvents. PXRD patterns were collected after soaking in methanol (MeOH), ethanol (EtOH), acetone, acetonitrile, dichloromethane (DCM), trichloromethane (TCM), hexane, ethyl acetate, diethyl ether, tetrahydrofuran (THF), and toluene.

Fig. S13. PYS results for (a) KGF-32, (b) KGF-33, and (c) KGF-34.

Fig. S14. TRMC results for KGF-32 (red) and KGF-33 (blue).

Table S2. TRMC results obtained for photoconductive S-CPs ($\lambda_{ex} = 355 \text{ nm}$, $I_0 = 9.1 \times 10^{15} \text{ photons cm}^{-2}$).

Compound	$\varphi\Sigma\mu_{ m max}$ / cm 2 V $^{-1}$ s $^{-1}$	Reference
$[Pb_3ttc_2 \cdot 2H_2O]_n$	7.4 ×10 ⁻⁵	S1
$[Pb(tadt)]_n$	4.9×10^{-5}	S2
$[Sn_2(Httc)_2 \cdot MeOH]_n$	1.8×10^{-5}	S3
$[Ag_2Httc]_n$	2.7×10^{-5}	S4
$[AgH_2ttc]_n$	2.8×10^{-5}	S4
$[Ag_3ttc]_n$	1.5×10^{-4}	S4
$[Ag(tzdt)]_n$	3.6×10^{-5}	S5
$[Ag_2(tzdt)(TFA)]_n$	2.2×10^{-5}	S5
Mn ₂ (DSBDC)	1.8×10^{-5}	S6
$Cu_4{}^{I}Cu_2{}^{II}Br_4(pyr-dtc)_4$	3.0×10^{-5}	S6
$[Pb(o-SPhOMe)_2]_n$ (KGF-32)	2.5×10^{-5}	This work
$[Pb(m-SPhOMe)_2]_n$ (KGF-33)	3.8×10^{-5}	This work
[Pb(<i>p</i> -SPhOMe) ₂] _{<i>n</i>} (KGF-34)	1.4×10^{-3}	This work

 H_3 ttc = trithiocyanuric acid, H_2 tadt = 1,3,4-thiadiazole-2,5- dithiol, Htzdt = 1,3-thiazolidine-2-thione

Fig. S15. Mapping of (a) VBM and (b) CBM for KGF-32.

Fig. S16. Mapping of (a) VBM and (b) CBM for KGF-33.

Fig. S17. Mapping of (a) VBM and (b) CBM for KGF-34.

Reference

- S1. Y. Kamakura, P. Chinapang, S. Masaoka, A. Saeki, K. Ogasawara, S. R. Nishitani, H. Yoshikawa, T. Katayama, N. Tamai, K. Sugimoto, D. Tanaka, *J. Am. Chem. Soc.*, 2020, 142, 27–32.
- S2. Y. Kamakura, C. Sakura, A. Saeki, S. Masaoka, A. Fukui, D. Kiriya, K. Ogasawara, H. Yoshikawa, D. Tanaka, *Inorg. Chem.*, 2021, 60, 5436–5441.
- S3. Y. Kamakura, S. Fujisawa, K. Takahashi, H. Toshima, Y. Nakatani, H. Yoshikawa, A. Saeki, K. Ogasawara, D. Tanaka, *Inorg. Chem.*, 2021, 60, 12691–12695.
- S4. T. Wakiya, Y. Kamakura, H. Shibahara, K. Ogasawara, A. Saeki, R. Nishikubo, A. Inokuchi, H. Yoshikawa, D. Tanaka, *Angew. Chem. Int. Ed.*, 2021, 60, 23217–23224.
- S5. R. Akiyoshi, A. Saeki, K. Ogasawara, H. Yoshikawa, Y. Nakamura, D. Tanaka, *CrystEngComm*, 2023, **25**, 2990–2994.
- T. Okubo, H. Anma, N. Tanaka, K. Himoto, S. Seki, A. Saeki, M. Maekawa, T. Kuroda-Sowa, *Chem. Commun.*, 2013, 49, 4316–4318.