Supporting Information

Potential Molecular Qubits of Long Coherence Time Constructed by Bromo-substituted Trityl Radicals

Yu-Shuang Zhang\#, Yi-Fei Fan\#, Xing-Quan Tao, Geng-Yuan Li, Qing-Song Deng, Zheng Liu, Ye-Xin Wang*, Song Gao and Shang-Da Jiang*

Supporting Information

Contents

SI 1: General methods of synthesis, characterization and sample preparation

SI 2: Simulations of CW-EPR and EDFS spectrum for TRs

SI 3: T_{1} measurement and fitting for TRs

SI 4: T_{m} measurement and fitting for TRs

SI 5: Rabi oscillations of TRs

SI 6: Simulations of T_{m} measurement with CPMG dynamic decoupling for TRs

SI 1: General methods of synthesis, characterization and sample preparation

In this work, we reported a new bromo-substitute trityl radical 6,6'-((2,4,6tribromophenyl) methylene) bis (1,2,3,4,5-pentachlorobenzene) $\left(\mathbf{T B r}_{\mathbf{3}} \mathbf{C l}_{\mathbf{1 0}} \mathbf{M}\right)$. This radical presents three bromine atoms in otho- and para-positions of one phenyl ring while chlorine atoms replace all of hydrogen atoms in the remaining two phenyl rings. Thus, a mixed halogen substituted trityl radical was prepared and the relevant characterizations are as follows.

Synthetic Procedure

Scheme S1. Synthesis of PBCB-CI ${ }^{1}$.

Procedure: In a 25 mL high-pressure reactor equipped with a magnetic stirrer, under nitrogen flux, were added 1.0 g of 1,2,3,4,5-pentachlorobenzene (3.99 mmol), 310 mg anhydrous aluminum bromide (2.05 mmol), and $165 \mu \mathrm{~L}$ of chloroform (2.05 mmol). The mixture was heated at $130^{\circ} \mathrm{C}$ for 3.5 h . The mixture was then poured on 50 mL of water and extracted with dichloromethane. The organic phase was washed with 1 M hydrochloric acid $(50 \mathrm{~mL})$ and aqueous solution of $\mathrm{NaHCO}_{3}(10 \% \mathrm{w} / \mathrm{w})(50 \mathrm{~mL})$ in portions, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The crude product was purified by column flash-chromatography on silica gel using hexane as eluent. The crude product of 6,6 -(chloromethylene) bis (1,2,3,4,5-pentachlorobenzene) (PBCBCI) was obtained as a white compound (yield $=45 \%$).

Scheme S2. Synthesis of 6,6'-((2,4,6-tribromophenyl) methylene) bis(1,2,3,4,5pentachlorobenzene) ($\left.\mathbf{T B r}_{3} \mathbf{C l}_{10} \mathbf{M}-\boldsymbol{\alpha} \mathbf{H}\right)$.

Procedure: In a 100 mL high-pressure reactor 200 mg PBCB-Cl (0.36 mmol), 700 mg 1,3,5-tribromobenzene (2.19 mmol) and 60 mg anhydrous aluminum chloride (0.4 $\mathrm{mmol})$ were added. The mixture was heated to $120^{\circ} \mathrm{C}$ for 2.5 h . After cooling to room temperature, the mixture was poured on 50 mL of water and extracted with dichloromethane. The organic phase was washed with 1M hydrochloric acid (50 mL) and aqueous solution of $\mathrm{NaHCO}_{3}(10 \% \mathrm{w} / \mathrm{w})(50 \mathrm{~mL})$ in portions, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The crude product was purified by silica gel column chromatography using cold dichloromethane as eluent. The crude product was then triturated with cold chloroform ($3 \times 3 \mathrm{~mL}$) and centrifugated to obtain the pure white product of $\mathbf{T B r}_{3} \mathbf{C l}_{\mathbf{1 0}} \mathbf{M} \mathbf{- \alpha H}$ (yield $=12 \%$). ${ }^{1} \mathrm{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), reported in Figure S1, presents the following signals: $\delta=6.80(\mathrm{~s}, 1 \mathrm{H}), \delta=7.68(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$ and $\delta=7.76(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$), reported in Figure S 2 , presents the following peaks: $\delta=63.71,122.14,128.16,129.25,135.76,137.13,137.47$ ppm. MALDI-TOF (m/z) for $\left[\mathrm{TBr}_{3} \mathrm{Cl}_{10} \mathrm{M}-\alpha \mathrm{H}\right]: 824.46[\mathrm{M}]^{+}$. IR-ATR (Fig. S5): $v_{\text {MAX }}$ $678,718,756,799,808,861,1243,1299,1324,1347,1372,1531,1559,1525 \mathrm{~cm}^{-1}$.

Scheme S3. Synthesis of 6,6'-((2,4,6-tribromophenyl) methylene) bis(1,2,3,4,5pentachlorobenzene) radical $\left(\mathbf{T B r}_{3} \mathbf{C l}_{\mathbf{1 0}} \mathbf{M}\right)$.

Procedure: In a 25 mL high-pressure reactor equipped with a magnetic stirrer, under nitrogen flux, operating in the dark, were added 50 mg 6,6'-((2,4,6-tribromophenyl) methylene)bis(1,2,3,4,5-pentachlorobenzene) ($\left.\mathbf{T B r}_{\mathbf{3}} \mathbf{C l}_{\mathbf{1 0}} \mathbf{M} \mathbf{- \alpha H}\right)(0.061 \mathrm{mmol}), 10 \mathrm{~mL}$ freshly distilled THF and 200 mL methanol solution of $\mathrm{N}(n-\mathrm{Bu})_{4} \mathrm{OH}(40 \% \mathrm{w} / \mathrm{w})(0.377$ mol). After $5 \mathrm{~h}, 20 \mathrm{mg}$ tetrachloro-1,4-benzoquinone (0.08 mmol) were added. After 2 h the mixture was concentrated under vacuum. The crude product was purified by column flash chromatography on silica gel using hexane: dichloromethane (3:1) as eluent, obtaining a dark-red powder product of $\mathbf{T B r}_{\mathbf{3}} \mathbf{C l}_{\mathbf{1 0}} \mathbf{M}(\mathrm{R}=86 \%)$. MALDI-TOF $(\mathrm{m} / \mathrm{z})$ for $\left[\mathrm{TBr}_{3} \mathrm{Cl}_{10} \mathrm{M}\right]: 823.47[\mathrm{M}]^{+}$. IR-ATR (Fig. S8): $v_{\text {MAX }} 717,729,861,1260$, $1304,1333,1548 \mathrm{~cm}^{-1}$.

Structural Characterization

NMR Spectrum

Figure S1. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ spectrum of $\mathbf{T B r}_{\mathbf{3}} \mathbf{C l}_{\mathbf{1 0}} \mathbf{M} \mathbf{- \alpha \mathbf { H }}$.

Figure $\mathbf{S 2}$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ spectrum of $\mathbf{T B r}_{\mathbf{3}} \mathbf{C l}_{\mathbf{1 0}} \mathbf{M} \mathbf{- \alpha \mathbf { H }}$.

Mass Spectrum

Figure S3. MALDI-TOF spectrum of $\mathbf{T B r}_{3} \mathbf{C l}_{\mathbf{1 0}} \mathbf{M}-\boldsymbol{\alpha} \mathbf{H}$.

Figure S4. MALDI-TOF spectrum of $\mathbf{T B r}_{3} \mathbf{C l}_{\mathbf{1 0}} \mathbf{M}$.

IR-ATR Spectrum

Figure S5. IR-ATR spectrum of $\mathbf{T B r}_{\mathbf{3}} \mathbf{C l}_{\mathbf{1 0}} \mathbf{M} \mathbf{- \alpha} \mathbf{H}$ powder.

Figure S6. IR-ATR spectrum of $\mathbf{T B r}_{3} \mathbf{C l}_{\mathbf{1 0}} \mathbf{M}$ powder.

X-ray single crystal diffraction spectrum

Figure S7. Molecular structures of $\mathbf{T B r}_{\mathbf{3}} \mathbf{C l}_{\mathbf{1 0}} \mathbf{M} \mathbf{- \alpha H}$ obtained by single crystal X-Ray Diffraction.

Table S1. Crystallographic data of $\mathbf{T B r}_{3} \mathbf{C l}_{\mathbf{1 0}} \mathbf{M}-\alpha \mathbf{H}$.

$\mathrm{TBr}_{3} \mathrm{Cl}_{10} \mathbf{M}-\alpha \mathrm{H}$	
Formula	$\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{Br}_{3} \mathrm{Cl}_{10}$
Mr	807.39
T/K	150
Crystal system	Monoclinic
Space group	C12/cl(No.15)
a / \AA	12.8567 (3)
b / \AA	11.4178 (2)
c / \AA	17.8798 (4)
V / \AA^{3}	2464.56 (10)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	110.116 (2)
$\gamma /{ }^{\circ}$	90
Z	4
$\rho_{\text {calc }} / \mathrm{g} \cdot \mathrm{cm}^{-3}$	2.176
μ / mm^{-1}	15.96
F_{000}	1543
Crystal size / mm ${ }^{3}$	$0.13 \times 0.12 \times 0.1$
Radiation	$\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184 \AA)$
2θ range $/{ }^{\circ}$	2.6-76.5
$\mathrm{R}_{\text {int }}$	0.0094
S (on F^{2})	1.083
$R_{1}, w R_{2}(I \geq 2 \sigma(I))$	0.0998 (2127), 0.2550 (2179)
$\Delta \rho_{\text {max }} / \Delta \rho_{\text {min }} / \mathrm{e} \cdot \AA^{-3}$	1.10 / -1.57

Sample Preparation

The solution samples were prepared by dissolving the radicals in degassed d_{8} toluene with a concentration of $0.1 \mathrm{mmol} / \mathrm{L}$. The film samples were prepared by mixing the radicals and PMMA in DCM with a concentration of $0.01(\mathrm{w} / \mathrm{w})$ and evaporating the solvent in a vacuum oven at $40^{\circ} \mathrm{C}$ for 12 h in the dark. The film samples of TRs were scratched from substrates by knife and put into EPR tubes.

Based on the concentration of samples in PMMA film and d_{8}-toluene frozen solution, the average intermolecular distances and the dipole interactions are estimated by Eq. S1. The values of dipolar coupling are shown in Table S2.
$\hat{H}=-\frac{\mu_{0} \gamma_{1} \gamma_{2} \hbar^{2}}{4 \pi|\vec{r}|^{3}}\left[3\left(S_{1} \cdot \vec{r}\right)\left(S_{2} \cdot \vec{r}\right)-S_{1} \cdot S_{2}\right] \#(E q \cdot S 1) \#$
where
H is potential energy of the interaction;
μ_{0} is vacuum magnetic permeability;
$\gamma_{1,2}$ are gyromagnetic ratio of two electrons;
$S_{1,2}$ are spin quanta of two spin centers;
$|\vec{r}|$ is average distance of intermolecular;
\hbar is reduced Planck constant;
\vec{r} is a unit vector parallel to the line joining the centers of the two dipoles.
Table S2. Estimated dipolar interactions of samples in PMMA and d_{8}-toluene solutions.

PMMA Samples	Concentration ($\mathrm{mmol} / \mathrm{L}$)	Average intermolecular distance (nm)	Dipolar coupling (MHz)
PTM	15.65	4.734	0.4894
TTM	21.50	4.259	0.6721
$\mathrm{TBr}_{3} \mathrm{Cl}_{10} \mathrm{M}$	14.42	4.865	0.4509
$\mathrm{TBr}_{3} \mathrm{Cl}_{6} \mathrm{M}$	17.32	4.577	0.5415
$\mathrm{TBr}_{6} \mathrm{Cl}_{5} \mathrm{M}$	13.37	4.988	0.4184
TTBrM	12.47	5.106	0.3900
Solution Samples	0.10	25.51	0.0031

Although the intermolecular dipole coupling in the PMMA samples are larger than that in d_{8}-toluene solutions, the interaction intensities are all less than 1 MHz . Thus, the influence of dipole interactions could be neglected.

SI 2: Simulations of CW-EPR and EDFS spectrum for TRs

Table S3. CW-EPR spectra simulation of g-factors and spectral linewidth of TRs in 0.1 $\mathrm{mmol} / \mathrm{L} d_{8}$-toluene solutions at room temperature. ($a:\left|A_{\text {iso }}\right|=3.48 \mathrm{MHz}$)

Compound	$\boldsymbol{g}_{\text {iso }}$	Linewidth (mT)
$\mathbf{P T M}_{\mathbf{T T M}}{ }^{\boldsymbol{a}}$	2.0037	0.16
$\mathbf{T B r}_{3} \mathbf{C l}_{\mathbf{1 0}} \mathbf{M}$	2.0040	0.15
$\mathbf{T B r}_{3} \mathbf{C l}_{\mathbf{6}} \mathbf{M}$	2.0054	0.34
$\mathbf{T B r}_{\mathbf{6}} \mathbf{C l}_{5} \mathbf{M}$	2.0055	0.46
$\mathbf{T T B r M}$	2.0065	0.43

Table S4. CW-EPR spectra simulation of g-factors and spectral linewidth of TRs in 0.01 (w/w) PMMA films at room temperature.

Compound	$\boldsymbol{g}_{\text {eff, } \mathbf{x}}$	$\boldsymbol{g}_{\text {eff, },}$	$\boldsymbol{g}_{\text {eff, } \boldsymbol{z}}$	$\boldsymbol{\Delta g}$ $\left(\boldsymbol{g}_{\text {max }}-\boldsymbol{g}_{\text {min }}\right)$	Linewidth $(\mathbf{m T})$
$\mathbf{P T M}$	2.0020	2.0020	2.0057	0.0037	0.56
$\mathbf{T T M}$	2.0028	2.0028	2.0058	0.0030	0.72
$\mathbf{T B r}_{\mathbf{3}} \mathbf{C l}_{\mathbf{1 0}} \mathbf{M}$	2.0003	2.0025	2.0107	0.0104	1.43
$\mathbf{T B r}_{\mathbf{3}} \mathbf{C l}_{\mathbf{6}} \mathbf{M}$	1.9995	2.0040	2.0111	0.0116	1.34
$\mathbf{T B r}_{\mathbf{6}} \mathbf{C l}_{\mathbf{5}} \mathbf{M}$	2.0020	2.0020	2.0134	0.0114	2.26
$\mathbf{T T B r M}^{2}$	2.0024	2.0040	2.0191	0.0167	2.85

Table S5. EDFS spectra simulation of g-factors and spectral linewidth of TRs in 0.1 $\mathrm{mmol} / \mathrm{L} d_{8}$-toluene frozen solutions in glassy state at 10 K .

Compound	$g_{\text {eff, } x}$	$g_{\text {eff, },}$	$g_{\text {eff }, z}$	Δg $\left(g_{\text {max }}-g_{\text {min }}\right)$	Linewidth $(\mathbf{m T})$
$\mathbf{T B r}_{3} \mathbf{C l}_{\mathbf{1 0}} \mathbf{M}$	1.9986	2.0040	2.0116	0.0130	1.51

$\mathbf{T B r}_{\mathbf{3}} \mathbf{C l}_{\mathbf{6}} \mathbf{M}$	2.0046	2.0048	2.0061	0.0015	1.99
$\mathbf{T B r}_{\mathbf{6}} \mathbf{C l}_{\mathbf{5}} \mathbf{M}$	2.0012	2.0019	2.0143	0.0131	2.35
$\mathbf{T T B r} \mathbf{M}$	2.0030	2.0033	2.0180	0.0150	3.15

Table S6. EDFS spectra simulation of g-factors and spectral linewidth of TRs in 0.01 (w/w) PMMA films at 10 K .

Compound	$g_{\text {eff,x }}$	$g_{\text {eff, } \mathrm{y}}$	$g_{\text {eff,z }}$	$\begin{gathered} \Delta g \\ \left(g_{\max }-g_{\min }\right) \end{gathered}$	Linewidth (mT)
PTM	2.0022	2.0023	2.0068	0.0047	0.64
TTM	2.0039	2.0042	2.0052	0.0012	1.02
$\mathrm{TBr}_{3} \mathrm{Cl}_{10} \mathrm{M}$	1.9981	2.0034	2.0128	0.0147	1.66
$\mathrm{TBr}_{3} \mathrm{Cl}_{6} \mathrm{M}$	2.0048	2.0051	2.0061	0.0013	2.39
$\mathrm{TBr}_{6} \mathrm{Cl}_{5} \mathrm{M}$	2.0040	2.0040	2.0125	0.0085	3.37
TTBrM	1.9950	2.0156	2.0157	0.0206	3.60

Table S7. EDFS spectra simulation of g-factors and spectral linewidth of TRs in 0.01 (w/w) PMMA films at room temperature.

Compound	$g_{\text {eff,x }}$	$g_{\text {eff, },}$	$g_{\text {eff,z }}$	$\begin{gathered} \Delta g \\ \left(g_{\max }-g_{\min }\right) \end{gathered}$	Linewidth (mT)
PTM	2.0016	2.0016	2.0076	0.0060	0.59
TTM	2.0048	2.0051	2.0115	0.0067	0.80
$\mathrm{TBr}_{3} \mathrm{Cl}_{10} \mathrm{M}$	2.0001	2.0004	2.0105	0.0104	1.46
$\mathrm{TBr}_{3} \mathrm{Cl}_{6} \mathrm{M}$	2.0046	2.0047	2.0057	0.0011	2.13
$\mathrm{TBr}_{6} \mathrm{Cl}_{5} \mathrm{M}$	2.0007	2.0009	2.0187	0.0180	2.46
TTBrM	1.9983	2.0148	2.0150	0.0167	3.60

Figure S8. EDFS spectra of TRs in 0.01 (w/w) PMMA films at room temperature.
SI 3: T_{1} measurement and fitting for TRs

Figure S9. a) T_{1} of TRs in $0.1 \mathrm{mmol} / \mathrm{L} d_{8}$-toluene frozen solutions in glassy state at 10 K and b) 0.01 (w/w) PMMA films at 10 K . (The data was smoothed with a five-point moving average).

All the inversion recovery data are fitted with the stretched exponential decay function in Eq. S2,

$$
I(t)=I(0) \exp \left(-\frac{t}{T}\right)^{x} \#(E q \cdot S 2) \#
$$

For the clarity of the graphs, we kept only the raw data and omitted the fitted curves in the following graphs.

Figure S10. Variable temperature inversion recovery data of TRs a) $\mathbf{T B r}_{3} \mathbf{C l}_{\mathbf{6}} \mathbf{M}$, b) $\mathbf{T B r}_{3} \mathbf{C l}_{10} \mathbf{M}$, c) $\mathbf{T B r}_{6} \mathbf{C l}_{5} \mathbf{M}$ and d) $\mathbf{T T B r M}$ in $0.1 \mathrm{mmol} / \mathrm{L} d_{8}$-toluene frozen solution in glassy state (The data was smoothed with a five-point moving average).

Figure S11. Variable temperature inversion recovery data of TRs a) TTM, b) PTM, c)
$\mathbf{T B r}_{3} \mathbf{C l}_{6} \mathbf{M}$, d) $\mathbf{T B r}_{3} \mathbf{C l}_{\mathbf{1 0}} \mathbf{M}$, e) $\mathbf{T B r}_{6} \mathbf{C l}_{5} \mathbf{M}$ and f) $\mathbf{T T B r M}$ in 0.01 (w/w) PMMA films (The data was smoothed with a five-point moving average).

Table S8. Variable temperature T_{1} values of TRs in $0.1 \mathrm{mmol} / \mathrm{L} d_{8}$-toluene solutions.

$\mathbf{T B r}_{3} \mathbf{C l}_{\mathbf{1 0}} \mathbf{M}$, sol.		$\mathbf{T B r}_{3} \mathbf{C l}_{6} \mathbf{M}$, sol.		$\mathbf{T B r}_{\mathbf{6}} \mathbf{C l}_{\mathbf{5}} \mathbf{M}$, sol.		$\mathbf{T T B r M}$ sol.	
$\boldsymbol{T} / \mathbf{K}$	$\boldsymbol{T}_{\mathbf{1}} / \mathbf{m s}$	$\boldsymbol{T} / \mathbf{K}$	$\boldsymbol{T}_{\mathbf{1}} / \mathbf{m s}$	$\boldsymbol{T} / \mathbf{K}$	$\boldsymbol{T}_{\mathbf{1}} / \mathbf{m s}$	$\boldsymbol{T} / \mathbf{K}$	$\boldsymbol{T}_{\mathbf{1}} / \mathbf{m s}$
10	$10.6(2)$	10	$10.9(1)$	10	$8.58(9)$	10	$5.13(5)$
20	$2.76(4)$	20	$2.47(6)$	20	$1.04(1)$	20	$0.87(3)$
40	$0.66(2)$	40	$1.30(3)$	40	$0.36(1)$	40	$0.244(5)$
60	$0.288(8)$	60	$0.251(9)$	60	$0.112(5)$	60	$0.113(5)$
80	$0.121(4)$	80	$0.177(2)$	80	$0.098(2)$	80	$0.068(4)$
100	$0.103(2)$	100	$0.086(1)$	100	$0.085(3)$	100	$0.056(3)$

Table S9. Variable temperature T_{1} values of TRs in 0.01 (w/w) PMMA films.

PTM, film		TTM, film		$\mathrm{TBr}_{3} \mathrm{Cl}_{10} \mathrm{M}$, film	
T/ K	T_{1} / ms	T/K	T_{1} / ms	T/K	T_{1} / ms
10	13.4(2)	10	3.86(9)	10	0.86(3)
20	8.1(2)	20	0.97(2)	20	0.66(1)
40	2.85(5)	40	0.488(8)	40	$0.366(5)$
60	1.46(3)	60	0.426(4)	60	0.208(1)
80	0.753(6)	80	0.374(4)	80	0.176(1)
100	0.680(6)	100	0.278(3)	100	0.1110(6)
150	0.280(2)	150	0.200(2)	150	0.0829(6)
200	0.188(2)	200	0.167(1)	200	0.0171(2)
250	0.0302(5)	250	0.108(1)	250	0.0076(7)
298	0.0121(1)	298	0.01550(3)	298	0.00310(2)
$\mathbf{T B r}_{3} \mathrm{Cl}_{6} \mathbf{M}$, film		$\mathrm{TBr}_{6} \mathrm{Cl}_{5} \mathrm{M}$, film		TTBrM, film	
$\boldsymbol{T} / \mathrm{K}$	T_{1} / ms	T/K	T_{1} / ms	T/K	T_{1} / ms
10	0.229(8)	10	0.57(2)	10	1.060(8)
20	0.33(2)	20	0.64(2)	20	1.05(1)
40	0.233(5)	40	0.296(4)	40	0.280(3)
60	0.177(4)	60	0.157(3)	60	0.125(1)
80	0.147(4)	80	0.110(2)	80	0.112(1)
100	0.105(2)	100	0.081(1)	100	0.0609(4)
150	0.061(2)	150	0.0415(8)	150	0.049(1)
200	0.052(1)	200	0.0200(4)	200	0.0222(4)
250	0.0094(2)	250	0.0106(2)	250	0.0067(1)
298	0.00320(2)	298	0.00230(3)	298	0.00200(3)

Figure S12. T_{1} versus temperature measured by X-band pulsed-EPR (3460 G) for TTBrM in $0.1 \mathrm{mmol} / \mathrm{L} d_{8}$-toluene solution and in $0.01(\mathrm{w} / \mathrm{w})$ PMMA film compared with other representative published molecule-based electronic spin qubit systems. Data are from ref. $2\left(\mathrm{~N} @ \mathrm{C}_{60} \text {, Gray }\right)^{2}$, ref. $3(\mathrm{CuPc}, \text { Purple })^{3}$, ref. $4\left(\left[\mathrm{~V}\left(\mathrm{C}_{8} \mathrm{~S}_{8}\right)_{3}\right]^{2-} \text {, Orange }\right)^{4}$, ref. $5\left(\mathrm{VO}(\mathrm{dmit})_{2} \text {, Dark Blue }\right)^{5}$, ref. $6\left(\mathrm{Cu}\left(\mathrm{S}_{2} \mathrm{C}_{4} \mathrm{~N}_{2}\right)_{2} \text {, Brown }\right)^{6}$, ref. $7\left(\text { Blatter- } \mathrm{R}_{1} \text {, Cyan }\right)^{7}$, ref. 8 (CTPO, Yellow; NitSAc, Dark Green) ${ }^{8}$ and ref. 9 (PTM in CS_{2}, Pink) ${ }^{9}$.

SI 4: T_{m} measurement and fitting for TRs

Figure S13. a) T_{m} of TRs in $0.1 \mathrm{mmol} / \mathrm{L} d_{8}$-toluene frozen solutions in glassy state at 10 K and b) $0.01(\mathrm{w} / \mathrm{w})$ PMMA films at 10 K . (The data was smoothed with a fivepoint moving average).

All the Hahn-echo decay data are fitted with the stretched exponential decay function in Eq. S2. For the clarity of the graphs, we kept only the raw data and omitted the fitted curves in the following graphs.

Figure S14. Variable temperature Hahn-echo decay data of TRs a) $\mathbf{T B r}_{3} \mathbf{C l}_{\mathbf{6}} \mathbf{M}$, b) $\mathbf{T B r}_{3} \mathbf{C l}_{\mathbf{1 0}} \mathbf{M}$, c) $\mathbf{T B r}_{6} \mathbf{C l}_{5} \mathbf{M}$ and d) $\mathbf{T T B r M}$ in $0.1 \mathrm{mmol} / \mathrm{L} d_{8}$-toluene frozen solutions in glassy state (The data was smoothed with a five-point moving average).

Figure S15. Variable temperature Hahn-echo decay data of TRs a) TTM, b) PTM, c) $\mathbf{T B r}_{3} \mathbf{C l}_{\mathbf{6}} \mathbf{M}$, d) $\mathbf{T B r}_{3} \mathbf{C l}_{\mathbf{1 0}} \mathbf{M}$, e) $\mathbf{T B r}_{\mathbf{6}} \mathbf{C l}_{5} \mathbf{M}$ and f) $\mathbf{T T B r M}$ in 0.01 (w/w) PMMA films (The data was smoothed with a five-point moving average).

Figure S16. Variable microwave power Hahn-echo decay data of TRs a) $\mathbf{T B r}_{3} \mathbf{C l}_{6} \mathbf{M}$, b) $\mathbf{T B r}_{3} \mathbf{C l}_{\mathbf{1 0}} \mathbf{M}$, c) $\mathbf{T C l}_{5} \mathbf{B r}_{6} \mathbf{M}$ and d) $\mathbf{T} \mathbf{T B r} \mathbf{M}$ in $0.1 \mathrm{mmol} / \mathrm{L} d_{8}$-toluene frozen solutions in glassy state at 10 K (The data was smoothed with a five-point moving average).

Figure S17. Variable microwave power Hahn-echo decay data of TRs a) TTM, b)
$\mathbf{P T M}$, c) $\mathbf{T B r}_{3} \mathbf{C l}_{6} \mathbf{M}$, d) $\mathbf{T B r}_{3} \mathbf{C l}_{\mathbf{1 0}} \mathbf{M}$, e) $\mathbf{T B r}_{6} \mathbf{C l}_{\mathbf{5}} \mathbf{M}$ and f) $\mathbf{T T B r M}$ in $0.01(\mathrm{w} / \mathrm{w})$ PMMA films at 10 K (The data was smoothed with a five-point moving average).

Table S10. Variable temperature T_{m} values of TRs in $0.1 \mathrm{mmol} / \mathrm{L} d_{8}$-toluene frozen solutions in glassy state.

$\mathbf{T B r}_{3} \mathbf{C l}_{\mathbf{1 0}} \mathbf{M}$, sol.		$\mathbf{T B r}_{3} \mathbf{C l}_{6} \mathbf{M}$, sol.		$\mathbf{T B r}_{\mathbf{6}} \mathbf{C l}_{5} \mathbf{M}$, sol.		TTBrM, sol.	
$\boldsymbol{T} / \mathbf{K}$	$\boldsymbol{T}_{\mathbf{m}} / \boldsymbol{\mu} \mathbf{s}$	$\boldsymbol{T} / \mathbf{K}$	$\boldsymbol{T}_{\mathbf{m}} / \boldsymbol{\mu} \mathbf{s}$	$\boldsymbol{T} / \mathbf{K}$	$\boldsymbol{T}_{\mathbf{m}} / \boldsymbol{\mu} \mathbf{s}$	$\boldsymbol{T} / \mathbf{K}$	$\boldsymbol{T}_{\mathbf{m}} / \boldsymbol{\mu} \mathbf{s}$
10	$14.9(4)$	10	$10.9(2)$	10	$13.2(2)$	10	$16.3(1)$
20	$13.1(3)$	20	$11.2(2)$	20	$11.4(1)$	20	$17.6(2)$
40	$13.3(3)$	40	$12.8(3)$	40	$11.5(1)$	40	$21.1(2)$
60	$11.6(3)$	60	$11.1(2)$	60	$9.6(1)$	60	$18.3(5)$
80	$9.7(3)$	80	$11.5(2)$	80	$8.5(1)$	80	$17.0(5)$
100	$2.6(2)$			100	$5.0(1)$	100	$12.1(4)$

Table S11. Variable temperature T_{m} values of TRs in $0.01(\mathrm{w} / \mathrm{w})$ PMMA films.

PTM, film		TTM, film		$\mathrm{TBr}_{3} \mathrm{Cl}_{10} \mathrm{M}$, film	
T / K	$T_{\mathrm{m}} / \mu \mathrm{s}$	T/K	$T_{\mathrm{m}} / \boldsymbol{\mu s}$	T/K	$T_{\mathrm{m}} / \boldsymbol{\mu s}$
10	0.71(6)	10	0.511(6)	10	1.536(8)
20	0.4(1)	20	0.70 (1)	20	0.86(3)
40	0.41(4)	40	0.67(2)	40	0.70(2)
60	0.47(5)	60	0.68(1)	60	0.69(2)
80	0.5(1)	80	0.63(1)	80	0.67(2)
100	0.3(5)	100	0.580(8)	100	0.75(2)
150	0.7(3)	150	0.602(7)	150	0.81(2)
200	0.64(5)	200	0.577(7)	200	0.58(1)
250	0.25(3)	250	0.552(7)	250	0.35(1)
298	0.210 (7)	298	0.206(2)	298	0.202(2)
$\mathbf{T B r}_{3} \mathrm{Cl}_{6} \mathbf{M}$, film		$\mathrm{TBr}_{6} \mathrm{Cl}_{5} \mathrm{M}$, film		TTBrM, film	
T / K	$\boldsymbol{T}_{\mathrm{m}} / \boldsymbol{\mu} \mathbf{s}$	T/K	$\boldsymbol{T}_{\mathrm{m} /} / \boldsymbol{s}$	T / K	$T_{\mathrm{m}} / \mu \mathrm{s}$
10	1.261(7)	10	2.000(9)	10	3.102(5)
20	1.53(1)	20	1.844(9)	20	2.84(1)
40	1.34(1)	40	1.573(9)	40	2.304(5)
60	1.11(1)	60	1.529(9)	60	2.194(6)
80	1.14(1)	80	1.491(8)	80	2.074(7)
100	1.29(1)	100	1.735(8)	100	2.351(7)
150	1.29(1)	150	1.68(1)	150	2.259(6)
200	0.889(8)	200	1.03(1)	200	1.907(5)
250	0.81(1)	250	0.750(5)	250	0.753(6)
298	0.29(2)	298	0.397(9)	298	0.270(1)

Figure S18. Variable-power T_{m} data of TRs a) in $0.1 \mathrm{mmol} / \mathrm{L} d_{8}$-toluene frozen solutions in glassy state and b) in $0.01(\mathrm{w} / \mathrm{w})$ PMMA films at 10 K with $\pi / 2$ pulse lengths adjusted to $12,24,48,96,192,384$, and 768 ns by $0,6,12,18,24,30$, and 36 dB attenuation. The error bars denote the standard error for each point, within the size range of the symbols.

Figure S19. T_{m} versus temperature measured by X-band pulsed-EPR (3460 G) for TTBrM in $0.1 \mathrm{mmol} / \mathrm{L} d_{8}$-toluene solution and in $0.01(\mathrm{w} / \mathrm{w})$ PMMA film compared with other representative published molecule-based electronic spin qubit systems. Data are from ref. $2\left(\mathrm{~N} @ \mathrm{C}_{60} \text {, Gray }\right)^{2}$, ref. $3(\mathrm{CuPc}, \text { Purple })^{3}$, ref. $4\left(\left[\mathrm{~V}\left(\mathrm{C}_{8} \mathrm{~S}_{8}\right)_{3}\right]^{2-} \text {, Orange }\right)^{4}$, ref. $5\left(\mathrm{VO}(\mathrm{dmit})_{2} \text {, Blue }\right)^{5}$ and ref. $6\left(\mathrm{Cu}\left(\mathrm{S}_{2} \mathrm{C}_{4} \mathrm{~N}_{2}\right)_{2} \text {, Brown }\right)^{6}$, ref. $7\left(\text { Blatter- } \mathrm{R}_{1} \text {, Cyan }\right)^{7}$, ref. 8 (CTPO, Yellow; NitSAc, Dark Green) ${ }^{8}$ and ref. 9 (PTM in CS_{2}, Pink) ${ }^{9}$.

SI 5: Rabi oscillations of TRs

Introduction to the nature of rabi oscillations

For such organic radicals of spin-1/2 with two energy levels, the Hamiltonian \hat{H}_{0} under the external static magnetic field B_{0} along ${ }^{Z}$-axis can be expressed as, $\hat{H}_{0}=\mu_{B} g_{z} B_{0} \hat{S}_{z}=\omega_{0} \widehat{S}_{z} \#(E q . S 3)$
where $\quad \mu_{B}$ is the Bohr magneton, g_{z} is the g-matrix's principal value along the z^{z}-axis, \widehat{S}_{z} is the spin operator along the $z_{\text {-axis }}$ and $\omega_{0}=\mu_{B} g_{z} B_{0}$ is the Larmor frequency of the electron spin in the static magnetic field ${ }^{B_{0}}$. The two eigenstates of the system under H_{0} are $\left|\psi_{ \pm}^{z}\right\rangle=\left| \pm \frac{1}{2}, z\right\rangle$. Although the two-level system is in thermal equilibrium by Boltzmann population, considering the pseudo-pure state, the system is initially prepared to the lower energy eigenstate $\left|\psi_{0}\right\rangle=\left|\psi_{+}^{z}\right\rangle$, and the spin- $1 / 2$ system can be demonstrated in the Bloch sphere (Figure S20).

In the existence of microwave magnetic field ${ }^{B_{1}}$ along the x^{x}-direction, the Hamiltonian of ${ }^{H_{1}}$ is time-dependent,
$\hat{H}_{1}(t)=\mu_{B} g_{x} B_{1} S_{x} \cos (2 \pi \Omega t)=\omega_{1} S_{x} \cos (2 \pi \Omega t), \#(E q . S 4)$
where g_{x} is the g-matrix's principal value along the x^{x}-axis, Ω is the microwave frequency, $\omega_{1}=\mu_{B} g_{x} B_{1}$ is the Larmor frequency of the electron spin in a magnetic field B_{1} along the $x_{\text {-axis, and }} \hat{S}_{x}$ is the spin operator along the $x_{\text {-axis. The total Hamiltonian }}$ $\hat{H}_{\text {Tot }}(t)$ of the system therefore turns out to be time-dependent as well,
$\hat{H}_{\text {Tot }}(t)=\hat{H}_{0}+\hat{H}_{1}(t) . \#(E q . S 5)$
In the purpose of convenient treatment of the Hamiltonian as time-independent, the rotating frame and rotation-wave approximation are considered. Applying the resonance condition, $\Omega=\omega_{0}$, the total Hamiltonian ${ }^{\prime}{ }_{\text {Tot turns out to be }}$ $\hat{H}_{\text {Tot }}^{\prime}=\omega_{1} S_{x}=\mu_{B} g_{x} B_{1} S_{x} \cdot \#(E q . S 6)$

Note that the eigenstate of the system under the $\hat{H}_{\text {Tot }}^{\prime}$ is no longer $\left|\psi_{ \pm}^{z}\right\rangle$, but superpositions of them, $\left|\psi_{ \pm}^{x}\right\rangle=\left| \pm \frac{1}{2}, x\right\rangle=\frac{1}{\sqrt{2}}\left(\left|\psi_{+}^{z}\right\rangle \pm\left|\psi_{-}^{z}\right\rangle\right)$. Therefore, the initial state
$\left|\psi_{0}\right\rangle=\left|\psi_{+}^{z}\right\rangle$, which is the eigenstate of \hat{H}_{0}, is now a superposition of $\left|\psi_{ \pm}^{x}\right\rangle$ under $\hat{H}_{\text {Tot }}^{\prime}$, denoted as $\left|\psi_{0}\right\rangle=\left|\psi_{+}^{z}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|\psi_{+}^{x}\right\rangle+\left|\psi_{-}^{x}\right\rangle\right)$. This superposition state evolves to $\left|\psi_{t}\right\rangle$ following the time-dependent Schrödinger equation,

$$
\left|\psi_{t}\right\rangle=e^{-i H_{1} t}\left|\psi_{0}\right\rangle=\frac{1}{\sqrt{2}}\left[e^{-i E_{+} t}\left|\psi_{+}^{x}\right\rangle+e^{-i E_{-} t}\left|\psi_{-}^{x}\right\rangle\right], \#(E q . S 7)
$$

where $E_{ \pm}$are the energies of $\left|\psi_{ \pm}^{x}\right\rangle$. Therefore, the Rabi oscillation, realized by applying the nutation microwave pulse $\hat{H}_{1}(t)$, is fundamentally the coherent quantum phase evolution as described by Eq. S6. The possibilities of the superposition state $\left|\psi_{t}\right\rangle$ collapses to the eigenstates of $\hat{H}_{0},\left|\psi_{ \pm}^{z}\right\rangle$ then oscillates upon time. In this sense, one can regard the nutation experiment as an illustration of the ability to prepare arbitrary coherent quantum superposition state with these organic radicals as spin- $1 / 2$ systems, which is a prerequisite for the realization of QIP. The Rabi frequency can be calculated as the frequency in the oscillation of the possibility $\left.\left|\left\langle\psi_{+}^{z}\right| \psi_{t}\right)\right|^{2}$, which is given by $\omega_{\text {Rabi }}=\omega_{1}=E_{+}-E_{-}=\mu_{B} g_{x} B_{1} \sqrt{S(S+1)-M_{S}\left(M_{S}+1\right)}$. \#(Eq.S8)
a

B_{0} direction

Scheme S4. a) Transform the experimental frame into rotating frame with rotating wave approximation. The eigenstates transform from $\left|\psi_{ \pm}^{z}\right\rangle$ to $\left|\psi_{ \pm}^{x}\right\rangle$ by eliminating the influence of B_{0} field while retaining B_{1} field in Bloch sphere.

Rabi oscillation data of TRs

Figure S20.Variable B_{1} Rabi oscillation data of TRs a) $\mathbf{T B r}_{3} \mathbf{C l}_{\mathbf{6}} \mathbf{M}$, b) $\mathbf{T B r}_{\mathbf{3}} \mathbf{C l}_{\mathbf{1 0}} \mathbf{M}$, c)
$\mathbf{T C l}_{5} \mathbf{B r}_{6} \mathbf{M}$ and d) $\mathbf{T T B r M}$ in $0.1 \mathrm{mmol} / \mathrm{L} d_{8}$-toluene frozen solutions in glassy state at 10 K . The Rabi frequencies $\left(\Omega_{\mathrm{R}}\right)$ show a linear function of the magnetic field of microwave $\left(B_{1}\right)$.

Figure S21. Variable B_{1} Rabi oscillation data of TRs a) TTM, b) $\mathbf{P T M}$, c) $\mathbf{T B r}_{3} \mathbf{C l}_{6} \mathbf{M}$, d) $\mathbf{T B r}_{3} \mathbf{C l}_{\mathbf{1 0}} \mathbf{M}$, e) $\mathbf{T C l}_{5} \mathbf{B r}_{6} \mathbf{M}$ and f) $\mathbf{T T B r M}$ in 0.01 (w/w) PMMA films at 10 K . The Rabi frequencies $\left(\Omega_{\mathrm{R}}\right)$ show a linear function of the magnetic field of microwave $\left(B_{1}\right)$.

Figure S22. Variable B_{1} Rabi oscillation data of TRs a) TTM, b) $\mathbf{P T M}$, c) $\mathbf{T B r}_{3} \mathbf{C l}_{6} \mathbf{M}$, d) $\mathbf{T B r}_{3} \mathbf{C l}_{\mathbf{1 0}} \mathbf{M}$, e) $\mathbf{T B r}_{\mathbf{6}} \mathbf{C l}_{5} \mathbf{M}$ and f) $\mathbf{T T B r M}$ in 0.01 (w/w) PMMA films at room temperature. The Rabi frequencies $\left(\Omega_{\mathrm{R}}\right)$ show a linear function of the magnetic field of microwave $\left(B_{1}\right)$.

SI 6: Simulations of $\boldsymbol{T}_{\mathrm{m}}$ measurement with CPMG dynamic decoupling for TRs

All the CPMG data can be fitted with the stretched exponential decay function in Eq. S2. For the sake of simplicity and aesthetics of the graphs, we kept only the raw data and omitted the fitted curves in the following graphs.

Figure S23. CPMG data of TRs a) $\mathbf{T B r}_{3} \mathbf{C l}_{6} \mathbf{M}$, b) $\mathbf{T B r}_{3} \mathbf{C l}_{\mathbf{1 0}} \mathbf{M}$, c) $\mathbf{T B r}_{6} \mathbf{C l}_{5} \mathbf{M}$ and d) TTBrM in $0.1 \mathrm{mmol} / \mathrm{L} d_{8}$-toluene frozen solutions in glassy state at 10 K (The data was smoothed with a five-point moving average).

Figure S24. CPMG data of TRs a) $\mathbf{T T M}$, b) $\mathbf{P T M}$, c) $\mathbf{T B r}_{3} \mathbf{C l}_{\mathbf{6}} \mathbf{M}$, d) $\mathbf{T B r}_{3} \mathbf{C l}_{\mathbf{1 0}} \mathbf{M}$, e) $\mathbf{T B r}_{\mathbf{6}} \mathbf{C l}_{5} \mathbf{M}$ and f) $\mathbf{T T B r M}$ in 0.01 (w/w) PMMA films at 10 K (The data was smoothed with a five-point moving average).

Table S12. T_{m} values from CPMG experiments of TRs in $0.1 \mathrm{mmol} / \mathrm{L} d_{8}$-toluene frozen
solutions in glassy state.

$\mathbf{T B r}_{3} \mathbf{C l}_{10} \mathbf{M}$, sol.		$\mathbf{T B r}_{3} \mathbf{C l}_{6} \mathbf{M}$, sol.		$\mathbf{T B r}_{6} \mathbf{C l}_{\mathbf{5}} \mathbf{M , ~ s o l .}$		TTBrM, sol.	
Inversion pulse number	$\boldsymbol{T}_{\mathbf{m}} / \boldsymbol{\mu} \mathbf{s}$	Inversion pulse number	$\boldsymbol{T}_{\mathbf{m}} / \boldsymbol{\mu} \mathbf{s}$	Inversion pulse number	$\boldsymbol{T}_{\mathbf{m}} / \boldsymbol{\mu} \mathbf{s}$	Inversion pulse number	$\boldsymbol{T}_{\mathbf{m}} / \boldsymbol{\mu} \mathbf{s}$
1	$24.8(2)$	1	$16.8(1)$	1	$25.7(2)$	1	$23.9(1)$
2	$30.3(4)$	2	$17.9(3)$	2	$24.1(2)$	2	$26.3(2)$
4	$34.8(9)$	4	$21.6(3)$	4	$30.9(3)$	4	$38.6(3)$
8	$37.2(8)$	8	$25.1(5)$	8	$35.8(4)$	8	$47.2(4)$
16	$37(2)$	16	$30.2(9)$	16	$39.4(9)$	16	$55.7(7)$
32	$34(6)$	32	$33(2)$	32	$48(1)$	32	$70(1)$

Table S13. T_{m} values from CPMG experiments of TRs in $0.01(\mathrm{w} / \mathrm{w})$ PMMA films.

PTM, film		TTM, film		$\mathrm{TBr}_{3} \mathrm{Cl}_{10} \mathrm{M}$, film	
Inversion pulse number	$T_{\mathrm{m}} / \mu \mathrm{s}$	Inversion pulse number	$T_{\mathrm{m}} / \mu \mathrm{s}$	Inversion pulse number	$T_{\mathrm{m}} / \mu \mathrm{s}$
1	3.86(4)	1	1.333(9)	1	1.99(3)
2	4.6(1)	2	1.74(1)	2	2.50(2)
4	6.1(1)	4	1.81(3)	4	2.80(3)
8	6.2(2)	8	2.69(4)	8	3.92(8)
16	9.0(4)	16	3.81(8)	16	5.3(2)
		32	5.9(1)	32	8.2(4)
TBr3C16M, film		TBr6C15M, film		TTBrM, film	
Inversion pulse number	$T_{\mathrm{m}} / \mu \mathrm{s}$	Inversion pulse number	$T_{\mathrm{m}} / \mu \mathrm{s}$	Inversion pulse number	$T_{\mathrm{m}} / \mu \mathrm{s}$
1	2.16(2)	1	2.95(2)	1	4.29(1)
2	2.62(2)	2	3.31(2)	2	6.08(3)
4	2.85(2)	4	3.75(2)	4	6.82(2)
8	3.62(6)	8	4.55(4)	8	8.09(3)
16	4.67(9)	16	6.01(9)	16	9.48(5)
32	7.0(1)	32	8.7(2)	32	12.0(1)
64	10(1)			64	17.8(5)

Reference

[1] M. Ballester, J. Riera, J. Castañer, C. Rovira and O. Armet, Synthesis, 1986, 1986, 64-66.
[2] J. J. L. Morton, A. M. Tyryshkin, A. Ardavan, K. Porfyrakis, S. A. Lyon and G. Andrew D. Briggs, J. Chem. Phys., 2006, 124, 014508.
[3] M. Warner, S. Din, I. S. Tupitsyn, G. W. Morley, A. M. Stoneham, J. A. Gardener, Z. Wu, A. J. Fisher, S. Heutz, C. W. M. Kay and G. Aeppli, Nature, 2013, 503, 504508.
[4] J. M. Zadrozny, J. Niklas, O. G. Poluektov and D. E. Freedman, ACS Cent. Sci., 2015, 1, 488-492.
[5] M. Atzori, E. Morra, L. Tesi, A. Albino, M. Chiesa, L. Sorace and R. Sessoli, J. Am. Chem. Soc., 2016, 138, 11234-11244.
[6] K. Bader, D. Dengler, S. Lenz, B. Endeward, S.-D. Jiang, P. Neugebauer and J. Van Slageren, Nat. Commun., 2014, 5, 5304.
[7] A. S. Poryvaev, E. Gjuzi, D. M. Polyukhov, F. Hoffmann, M. Fröba and M. V. Fedin, Angew. Chem. - Int. Ed., 2021, 60, 8683-8688.
[8] A. Collauto, M. Mannini, L. Sorace, A. Barbon, M. Brustolon and D. Gatteschi, J. Mater. Chem., 2012, 22, 22272.
[9] D. Schäfter, J. Wischnat, L. Tesi, J. A. De Sousa, E. Little, J. McGuire, M. Mas-Torrent, C. Rovira, J. Veciana, F. Tuna, N. Crivillers and J. Van Slageren, $A d v$. Mater., 2023, 35, 2302114.

