Supporting Information

Efficient noise suppression via controlling the optical cavity in near-infrared organic photoplethysmography sensors

Zhao Yang,^{a#} Byung Gi Kim,^{b#} Woongsik Jang^a and Dong Hwan Wang^{*ab}

^aSchool of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea ^bDepartment of Intelligent Semiconductor Engineering Chung-Ang University 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea

Fig. S1. Molecular structures of polymer donor PM6 and small-molecule acceptor Y6.

Fig. S2. Cross-sectional analysis of field emission scanning electron microscopy (FE-SEM) images for different thicknesses of the active layer: thickness-controlled ITO/PEDOT:PSS/PM6:Y6.

Fig. S3. Absorbance spectra characteristics of each PM6:Y6 film according to the different thicknesses of the PM6:Y6 active layer.

Fig. S4. EQE spectrum comparison of OPDs under each thickness with the reference and the other condition.

Fig. S5 (a) Dark J-V, (b) EQE, (c) responsivity (-0.1 V), (d) detectivity (-0.1 V), characteristics of all PM6:Y6 OPDs.

Fig. S6. Reported performance chart of non-fullerene based NIR OPDs.

Figure S7. (a-c) Supplementary topography analysis of atomic force microscopy (AFM) 3D images of the PM6:Y6 with different thicknesses: (a) 180 nm, (b) 220 nm, (c) 300 nm.

Figure S8. (a-e) Phase analysis of atomic force microscopy (AFM) images of the PM6:Y6 film depending on various thickness.

Fig. S9. (a-j) Normalized response characteristics of 140 nm PM6:Y6 OPD at 0 V; the frequency measurement range is from 0.1 to 1700 kHz.

Fig. S10. (a-j) Normalized response characteristics of 260 nm PM6:Y6 OPD at 0 V; the frequency measurement range is from 0.1 to 1700 kHz.

Fig. S11. Photoresponse times of thin and thick OPDs.

Cell	J _D @-0.1 V	R _{max} @-0.1 V	D* _{max} @-0.1 V
	(A/cm ²)	(A/W)	(Jones)
140 nm	4.80×10 ⁻⁵	0.498 @760 nm	1.27×10 ¹¹ @760 nm
180 nm	7.13×10 ⁻⁶	0.519 @770 nm	3.44×10 ¹¹ @770 nm
220 nm	6.60×10 ⁻⁷	0.566 @800 nm	1.23×10 ¹² @800 nm
260 nm	1.99×10 ⁻⁸	0.512 @830 nm	6.42×10 ¹² @830 nm
300 nm	2.80×10-7	0.452 @840 nm	1.49×10 ¹² @840 nm

Table S1. Performance parameters of PM6:Y6-based devices according to active-layer thickness at -0.1 V.

			J _{dark}	D*	D.f.	
			(A/cm ²)	(Jones)	Rets.	
This/knes/P	3HT:I R sh-BO	℃/Mo @3 /Ag	6.3×10 ⁻⁶ Shot noise@0V	2.1×10 ¹¹ Thermal noise	Total noise[@0V	
(nm)	(ΚΩ)	(F)	(-0.5 V) (AHz ^{-1/2})	$(-0.5 \vee \& 650 \text{ nm}) \\ (AHz^{-1/2}) \\ 4.28 \times 10^{12}$	(AHz ^{-1/2})	
ITO/ZnO/I 140	TB7-Th:W1 8.77	/MoOx/Ag 5.39×10 ⁻⁹	- 3.36×10 ⁻¹⁴	(3 ¥× \$ 0830 nm.)	[2] 1.37×10 ⁻¹²	
ITO/ZnO/PN	/i6:PDTTIC-/	4F/MoO3/Ag	1.6×10 ⁻⁹	2.44×10 ¹³	[3]	
140	14.42	4.65×10-9	1.76×10^{-14}	$(0.07 \times 10^{-12} 0 \text{ nm})$	1.07×10 ⁻¹²	
ITO/PEDOT	PSS/PM6:O	4TFIC/Phen-	8.3×10-5	9×10 ¹¹	۲۸٦	
	NaDPO/Ag		(-2 V)	(0 V & 915 nm)	נין	
ITO/ZnO/PTB7-Th:COTCN2/MoOx/Ag		1.08×10 ⁻⁷	1.18×10 ¹²	[5]		
		(-0.5 V)	(-0.5 V & 1000 nm))		
			2.26×10-7	2.84×10 ¹¹	[6]	
ITO/ZnO/PTB7-Th:COB/MoOx/Ag		(-0.5 V)	(-0.5 V & 915 nm)	[6]		
			1.99×10 ⁻⁸	6.42×10 ¹²		
			(-0.1 V)	(-0.1 V & 830 nm)		
ITO/PEDOT:PSS/PM6:Y6/PDINN/Ag		7.07×10 ⁻¹⁰	3.35×10 ¹³	I his work		
			(0 V)	(0 V & 830 nm)		

Table S2. Comparative performance chart of non-fullerene based NIR OPDs.

260	37.64	2.37×10-9	1.35×10 ⁻¹⁴	6.61×10 ⁻¹³	6.61×10 ⁻¹³
260	150.33	8.30×10 ⁻¹⁰	5.82×10 ⁻¹⁵	3.31×10 ⁻¹³	3.31×10 ⁻¹³

 Table S3. Impedance-related parameters and noise component analysis of PM6:Y6 devices based on different

active-layer thicknesses.

Table S4. Hole-only SCLC parameters of PM6:Y6 devices based on different active-layer thicknesses.

Thickness (nm)	V _{TFL} (V)	N _{trap} (#cm ⁻³)
140	0.94	2.09×10 ¹⁶
260	0.64	4.13×10 ¹⁵

Hole-only devices: ITO/PEDOT:PSS/PM6:Y6 (140 & 260 nm)/MoO₃/Ag

Table S5. Electron-only SCLC parameters of PM6:Y6 devices based on different active-layer thicknesses.

Thickness (nm)	V _{TFL} (V)	N _{trap} (#cm ⁻³)
140	0.86	1.91×10 ¹⁶
260	0.75	4.84×10 ¹⁵

Electron-only devices: ITO/ZnO/PM6:Y6 (140 & 260 nm)/PDINN/Ag

References:

- Y. Jinde, X. Sui, G. Lu, L. Lv, J. Yu, J. Wu, X. Dong, X. Liu, A. Peng, H. Huang, Significant enhancement of responsivity of organic photodetectors upon molecular engineering, J. Mater. Chem. C. 7 (2019) 5739. https://doi.org/10.1039/C9TC00576E.
- 2 T.J. Wen, D. Wang, L. Tao, Y. Xiao, Y.D. Tao, Y. Li, X. Lu, Y. Fang, C.Z. Li, H. Chen, D. Yang, Simple Near-Infrared Electron Acceptors for Efficient Photovoltaics and Sensitive Photodetectors, ACS Appl. Mater. Interfaces. 12 (2020) 39515–39523. https://doi.org/10.1021/ACSAMI.0C12100.
- Y. Chen, Y. Zheng, Y. Jiang, H. Fan, X. Zhu, Carbon-Bridged 1,2-Bis(2-Thienyl)ethylene: An Extremely Electron Rich Dithiophene Building Block Enabling Electron Acceptors with Absorption above 1000 nm for Highly Sensitive NIR Photodetectors, J. Am. Chem. Soc. 143 (2021) 4281–4289. https://doi.org/10.1021/JACS.0C12818
- 4 M. Babics, H. Bristow, W. Zhang, A. Wadsworth, M. Neophytou, N. Gasparini, I. McCulloch, Non-fullerene-based organic photodetectors for infrared communication, J. Mater. Chem. C. 9 (2021) 2375–2380. https://doi.org/10.1039/D0TC05341D.
- J.W. Ha, H.J. Eun, B. Park, H. Ahn, D.R. Hwang, Y.S. Shim, J. Heo, C. Lee, S.C. Yoon, J.H. Kim, S.J. Ko, Effect of Cyano Substitution on Non-Fullerene Acceptor for Near-Infrared Organic Photodetectors above 1000 nm, Adv. Funct. Mater. 33 (2023) 2211486. https://doi.org/10.1002/ADFM.202211486.
- U.H. Lee, B. Park, S. Rhee, J.W. Ha, D.R. Whang, H.J. Eun, J.H. Kim, Y. Shim, J. Heo, C. Lee, B.J. Kim, S.C. Yoon,
 J. Lee, S.J. Ko, Achieving Highly Sensitive Near-Infrared Organic Photodetectors using Asymmetric Non-Fullerene
 Acceptor, Adv. Opt. Mater. 11 (2023) 2300312. https://doi.org/10.1002/ADOM.202300312.