Supporting information

Tae Hoon Ha, Jeong Yeol Yoo, Seung Wan Kang and Chil Won Lee*
Department of Chemistry, Dankook University, Cheonan 31116, Korea

*Corresponding author. Email: chili@dankook.ac.kr; Fax: +82-31-8021-7218.

- ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra and GC-Mass data

Fig. S1. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathrm{tBN}-4 \mathrm{BF}$

Fig. S2. ${ }^{13}$ C-NMR of $\mathbf{t B N}-4 B F$
[Mass Spectrum]
Data : FAB-F566 Date : 27-Sep-2023 16:44
RT : 0.31 min Scan\# : $(9,16)$
Elements : C 100/0, H 100/0, F 2/0, N 5/0, 10B 2/0, 11B 2/0
Mass Tolerance : $10 \mathrm{ppm}, 5 \mathrm{mmu}$ if $\mathrm{m} / \mathrm{z}\langle 500,10 \mathrm{mmu}$ if $\mathrm{m} / \mathrm{z}\rangle 1000$
Unsaturation (U.S.) : 20.0-40.0

Fig. S3. GC-HRMS of tBN-4BF

- Device structure

Fig. S4. Energy level diagram in Device A.

In this work, 1 , and $3 \mathrm{wt} \%$ doped $\mathrm{tBN}-4 \mathrm{BF}$ device were prepared with Device A which TADF sensitizer is $0 \mathrm{wt} \%$, and HF device were prepared with Device A which TADF sensitizer is $20 \mathrm{wt} \%$;

Where EML is composed of;

Device A1: 4CzIPN + tBN-4BF $1 \mathrm{wt} \%$
Device A2 : 4CzIPN + tBN-4BF $3 \mathrm{wt} \%$
Device A3: TCz-4mCNTrz + tBN-4BF $1 \mathrm{wt} \%$

Device A4: TCz-4mCNTrz + tBN-4BF $3 \mathrm{wt} \%$

Device A: To investigate the lifetimes performance of the 4 CzIPN and $\mathrm{TCz}-4 \mathrm{mCNTrz}$ we fabricated the device with structure of ITO $(50 \mathrm{~nm}) /$ HAT-CN $(7 \mathrm{~nm}) /$ NPB $(10 \mathrm{~nm}) /$ PCzAC $(10 \mathrm{~nm}) /$ PIC-Trz + TADF sensitizer $(0,20 \mathrm{wt} \%)+\mathrm{tBN}-4 \mathrm{BF}(1,3 \mathrm{wt} \%)(20 \mathrm{wt} \%)(25 \mathrm{~nm}) / \operatorname{DDBFT}(5 \mathrm{~nm}) /$ ZADN $(40$ $\mathrm{nm}) / \mathrm{LiF}(1 \mathrm{~nm}) / \mathrm{Al}(100 \mathrm{~nm})$. In these devices, 1,4,5,8,9,11-Hexaazatriphenylenehexacarbonitrile (HAT-CN) as hole-injecting layer (HIL), N, N^{\prime}-Di(1-naphthyl)- N, N^{\prime}-diphenyl-(1, 1^{\prime}-biphenyl)-4,4'diamine (NPB) as hole-transporting layer (HTL), 9,10-Dihydro-9,9-dimethyl-10- (9-phenyl-9H-carbazol-3-yl)-acridine (PCzAC) as electron-blocking layer (EBL), 2,4-Bis(dibenzo[b,d]furan-2-yl)-6-phenyl-1,3,5-triazine (DDBFT) as hole-blocking layer (HBL), and 2,2,2"2-[4-(9,10-Di-naphthalen-2-yl-anthracen-2-yl)-phenyl]-1-phenyl-1 H-benzoimidazole (ZADN) as electron-transporting layer (ETL).

HAT-CN

TAPC

TSPO1

TmPyPb

Fig. S5. Energy level diagram in Device B.

Device B: To investigate the efficiency device performance of the $\mathrm{TCz}-2 \mathrm{mCNTrz}, \mathrm{TCz}-4 \mathrm{mCNTrz}$ and TCz-pCNTrz, we fabricated the device with structure of ITO (50 nm) / HAT-CN (7 nm) / TAPC $(50 \mathrm{~nm}) / \mathrm{mCP}(10 \mathrm{~nm}) /$ PIC-Trz + TADF sensitizer $(20 \mathrm{wt} \%)+\mathrm{tBN}-4 \mathrm{BF}(1,3 \mathrm{wt} \%)(25 \mathrm{~nm}) /$ TSPO1 $(5 \mathrm{~nm}) / \operatorname{TmPyPB}(40 \mathrm{~nm}) / \operatorname{LiF}(1 \mathrm{~nm}) / \mathrm{Al}(100 \mathrm{~nm})$. In these devices, $1,4,5,8,9,11-$

Hexaazatriphenylenehexacarbonitrile (HAT-CN) as hole-injecting layer (HIL), 4,4'-Cyclohexylidenebi$\mathrm{s}[\mathrm{N}, \mathrm{N}$-bis(4-methylphenyl)benzenamine] (TAPC) as hole-transporting layer (HTL), 1,3-bis(9Hcarbazolyl)benzene (mCP) as electron-blocking layer (EBL), diphenyl[4-
(triphenylsilyl)phenyl]phosphine oxide (TSPO1) as hole-blocking layer (HBL), and 2, 2', $2^{\prime \prime} 1,3,5-$ Tris(3-pyridyl-3-phenyl)benzene (TmPyPB) as electron-transporting layer (ETL).

Where EML is composed of;

Device B1: TCz-4mCNTrz + tBN-4BF $1 \mathrm{wt} \%$
Device B2: TCz-4mCNTrz + tBN-4BF $3 \mathrm{wt} \%$

Fig. S6. Device performance of 1, $3 \mathrm{wt} \% \mathrm{tBN}-4 \mathrm{BF}$ doped in PIC-Trz (a) The CE - Luminance curves (b) The PE - Luminance curves.

Fig. S7. Device performance of HF device(where TADF sensitizer is 4CzIPN with Device A) (a) The current density-voltage-luminance (J-V-L) curves (b) The EQE-Luminance-Current efficiency curves (c) Normalized EL intensities at the current density of 1,000 nit (d) device lifetime curves at an initial luminance 5,000 nit.

Fig. S8. Device performance of HF device(where TADF sensitizer is TCz-4mCNTrz with Device A) (a) The current density-voltage-luminance (J-V-L) curves (b) The EQE-Luminance-Current efficiency curves (c) Normalized EL intensities at the current density of 1,000 nit (d) device lifetime curves at an initial luminance 5,000 nit.

Fig. S9. Transient PL decay spectra of doped films(20 wt $\%$ doping concentration) of 4CzIPN, and $\mathrm{TCz}-4 \mathrm{mCNTrz}$ with PIC-Trz as the host

Fig. S10. Transient PL decay spectra of doped films(1, $3 \mathrm{wt} \%$ of $\mathrm{tBN}-4 \mathrm{BF}$ and $20 \mathrm{wt} \%$ of TADF sensitizer with PIC-Trz as the host)

Fig. S11. Device performance of Device B1~2 (a) The CE - Luminance curves (b) The PE - Luminance curves.

Table S1. Transient PL properties of doped film of $\mathrm{tBN}-4 \mathrm{BF}$ with PIC-Trz host.

Material	τ_{p} $(\mathrm{~ns})^{(a)}$	τ_{d} $(\mu \mathrm{~s})^{(b)}$	$A_{1}{ }^{(c)}$	$A_{2}{ }^{(d)}$	Total
$1 \mathrm{wt} \%$	9.00	5.30	15745.1	14540.9	30295.5
$3 \mathrm{wt} \%$	11.0	3.86	17997.3	12094.5	30094.1

${ }^{a}$ Prompt fluorescence lifetime of the TADF materials; ${ }^{b}$ Delayed fluorescence lifetime of the TADF materials; ${ }^{c}$ Prompt components of integrating the transient PL curves; ${ }^{d}$ Delayed components of integrating the transient PL curves

Table S2. PLQYs and transient PL properties of dopoed film of 4CzIPN and TCz-4mCNTrz with PICTrz host.

Material	τ_{p} $(\mathrm{~ns})^{(a)}$	τ_{d} $(\mu \mathrm{~S})^{(b)}$	$\Phi_{\text {Total }}$ $(\%)$	Φ_{F} $(\%)^{(c)}$	Φ_{TADF} $(\%)^{(d)}$	k_{P} $\left(10^{7}\right.$	k_{D} $\left(10^{5}\right.$	$k_{\mathrm{T}}{ }^{\mathrm{S}}$ $\left(10^{7}\right.$	$k_{\mathrm{nr}}{ }^{\mathrm{T}}$ $\left(10^{5}\right.$	k_{ISC} $\left(10^{7}\right.$	k_{RISC} $\left(10^{5} \mathrm{~s}^{-1}\right)^{(j)}$

						$\left.\mathrm{s}^{-1}\right)^{(e)}$	$\left.\mathrm{s}^{-1}\right)^{(f)}$	$\left.\mathrm{s}^{-1}\right)^{(g)}$	$\left.\mathrm{s}^{-1}\right)^{(h)}$	$\left.\mathrm{s}^{-1}\right)^{(i)}$	
4 CzIPN	36.6	2.69	95.5	51.0	40.2	2.73	3.71	1.39	0.66	1.33	5.98
TCz- 4 mCNTz	29.1	2.55	90.3	56.6	25.0	3.43	3.92	1.94	1.66	1.49	3.98

${ }^{a}$ Prompt fluorescence lifetime of the TADF materials; ${ }^{b}$ Delayed fluorescence lifetime of the TADF materials; ${ }^{c}$ Prompt components of the PLQYs were calculated by integrating the transient PL curves; ${ }^{d}$ Delayed components of PLQYs; ${ }^{e}$ Rate constant of prompt components; ${ }^{f}$ Rate constant of delay components; ${ }^{g}$ Radiative decay rate; ${ }^{h}$ Nonradiative decay rate; ${ }^{i}$ Rate constants for ISC; ${ }^{j}$ Rate constants for RISC

Table S3. Transient PL properties of doped film of 4CzIPN and TCz-4mCNTrz with PIC-Trz host.

Material	τ_{p} $(\mathrm{~ns})^{(a)}$	τ_{d} $(\mu \mathrm{~s})^{(b)}$	$A_{I^{(c)}}$	$A_{2^{(d)}}$	Total
4 CzIPN	36.6	2.69	30346.4	26356.4	56850.1
TCz- 4 mCNTrz	29.1	2.55	44021.8	26101.5	70273.3

${ }^{a}$ Prompt fluorescence lifetime of the TADF materials; ${ }^{b}$ Delayed fluorescence lifetime of the TADF materials; ${ }^{c}$ Prompt components of integrating the transient PL curves; ${ }^{d}$ Delayed components of integrating the transient PL curves

Table S4. PLQYs and transient PL properties of Device A2~4.

	TADF Film senitizer ratio $(\mathrm{wt} \%)$	$\mathrm{tBN}-$ 4 BF ratio $(\mathrm{wt} \%)$	$\tau^{H F_{p}}$ $(\mathrm{~ns})^{(a)}$	$\tau^{H F}{ }_{d}$ $(\mu \mathrm{~s})^{(b)}$	 Total $(\%)$
Device A2	4CzIPN	3	13.5	0.35	90.3

Device A3	TCz- 4 mCNTzz	1	11.4	0.49	97.9
Device A4 TCz- 4 mCNTrz	3	11.9	0.81	95.5	

${ }^{a}$ Prompt fluorescence lifetime of the TADF materials; ${ }^{b}$ Delayed fluorescence lifetime of the TADF materials.

Table S5. FRET and DET calculation summary between TADF sensitizer(4CzIPN, and TCz-4mCNTrz), and $\mathrm{tBN}-4 \mathrm{BF}$.

| Film | TADF senitizer
 ratio
 $(\mathrm{wt} \%)$ | tBN-4BF
 ratio
 $(\mathrm{wt} \%)$ | J
 $\left(10^{-25} \mathrm{~m}^{2}\right)^{(a)}$
 $(\mathrm{nm})^{(b)}$ | Φ_{FET}
 $(\%)^{(c)}$ | k_{FET}
 $\left(10^{7}\right.$
 $\left.\mathrm{s}^{-1}\right)^{(d)}$ | k_{DET}
 $\left(10^{6} \mathrm{~s}^{-}\right.$
 $)^{(e)}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Device A2 | 4CzIPN | 3 | 7.28 | 3.99 | 53.6 | 3.97 | 23.7 |
| Device A3 | TCz-4mCNTrz | 1 | 5.68 | 3.82 | 68.8 | 6.03 | 14.6 |
| Device A4 | TCz-4mCNTrz | 3 | 5.68 | 3.82 | 67.4 | 5.67 | 6.64 |

${ }^{a}$ Overlap integral between the UV-vis spectra of tBN-4BF and PL spectra of all TADF sensitizers; ${ }^{b}$ Förster energy transfer radii; ${ }^{c}$ Efficient of Förster energy transfer; ${ }^{d}$ Rate constants for Förster energy transfer; ${ }^{e}$ Rate constant of Dexter energy transfer.

Table S6. The weakest bond dissociation energy values of calculated at anion, and cation state for 4CzIPN, and TCz-4mCNTrz.

4CzIPN

TCz-4mCNTrz

TADF materials	Anion BDE (eV)	Cation BDE (eV)	Ref.
4 CzIPN	1.78	3.87	$[7]$
TCz-4mCNTrz	3.15	4.17	$[8]$

Equation

The rate constants of $\operatorname{ISC}\left(\mathrm{k}_{\mathrm{ISC}}\right)$ and $\operatorname{RISC}\left(\mathrm{k}_{\text {RISC }}\right)$ of $\mathrm{tBN}-4 \mathrm{BF}$ based on the following equations [1-3] :
$k_{\mathrm{p}}=1 / \tau_{\mathrm{p}}$
$k_{\mathrm{r}}^{\mathrm{S}}=\Phi_{\mathrm{p}} / k_{\mathrm{p}}$.
$k_{T A D F}=1 / \tau_{\mathrm{d}}$
$k_{n r}{ }^{\mathrm{T}}=k_{\text {TADF }}-\Phi_{\mathrm{p}} \times k_{\text {RISC }}$
$k_{\text {ISC }}=\left(1-\Phi_{\mathrm{p}}\right) / \tau_{\mathrm{p}}$
$k_{\text {RISC }}=\left(k_{\mathrm{p}} \times k_{\mathrm{TADF}} \times \Phi_{\mathrm{TADF}}\right) /\left(k_{\mathrm{ISC}} \times \Phi_{\mathrm{p}}\right)$
where, k_{P} is rate of prompt components, $k_{\text {TADF }}$ is rate of delay components, $k_{\mathrm{r}}^{\mathrm{s}}$ is rate of radiative decay on the singlet excited state to ground state, $k_{\mathrm{nr}}{ }^{\mathrm{T}}$ is rate of non-radiative decay on the triplet excited state to ground state, $k_{\text {ISC }}$ is rate of ISC, $k_{\text {RISC }}$ is rate of RISC, Φ_{p} is prompt PLQY, and $\Phi_{\text {TADF }}$ is delayed PLQY.

Eq. S1. Exciton Lifetime and Rate Constant equation.

By assuming (i) $k_{\mathrm{PF}} \gg k_{\mathrm{DF}}$ and (ii) $\left(k_{\mathrm{r}}^{\mathrm{S}}, k_{\mathrm{ISC}}\right.$ and $\left.k_{\mathrm{FET}}\right) \gg\left(k_{\mathrm{nr}}^{\mathrm{S}}, k_{\mathrm{r}}^{\mathrm{T}}, \mathrm{k}_{\mathrm{nr}}{ }^{\mathrm{T}}\right.$ and $\left.k_{\mathrm{DET}}\right)$, the average k_{FET} and k_{DET} can be calculated by Eq. S2 (5), (6), and (7);
$R_{0}=\left[\left(9(\operatorname{In} 10) k^{2} \Phi_{\text {TADF }}\right) \times J /\left(128 \pi^{5} N_{A} \eta^{4}\right)\right]^{1 / 6}$
$\boldsymbol{\phi}_{\text {FRET }}=1-\left(\tau^{\mathrm{HF}}{ }_{\mathrm{p}} / \tau^{\mathrm{TADF}}{ }_{\mathrm{p}}\right)$
$k_{F R E T}=\Phi_{F R E T} / \tau^{\mathrm{HF}}{ }_{\mathrm{p}}$
$k_{D E T}=1 / \tau^{H F}{ }_{\mathrm{d}}-1 / \tau_{\mathrm{d}}+k_{\mathrm{RISC}} \times k_{\mathrm{ISC}} \times\left(\tau_{\mathrm{p}}{ }_{\mathrm{p}}-\tau_{\mathrm{p}}\right)$
where, k^{2} is the dipole-dipole interaction(in this study $2 / 3$ was used which is the value for a random distribution), N_{A} is the Avogadro constant, η is the refractive index of the film.[4-6]

Eq. S2. Equation of Förster energy transfer radius and rate constant of Förster resonance energy transfer.

- Reference

[1] R. Pei, J. Lou, G. Li, H. Liu, X. Yin, C. Zhou, Z. Wang, and C. Yang, Chemical Engineering Journal 2022, 437, 135222
[2] J. Huang, H. Nie, J. Zeng, Z. Zhuang, S. Gan, Y. Cai, J. Guo, S. Su, Z. Zhao, and B. Z. Tang, Angew. Chem. Int. Ed 2017, 56, 12971-12976
[3] D. Zhou, G. S. M. Tong, G. Chen, Y. Tang, W. Liu, D. Ma, L. Du, J. Chen, and C. Che, Adv. Mater. 2022, 34, 2206598
[4] W. Xie, X. Peng, M. Li, W. Qiu, W. Li, Q. Gu, Y. Jiao, Z. Chen, Y. Gan, K. K. Liu, and S. su, Adv.
Optical Mater. 2022, 10, 2200665
[5] K. Stavrou, L. G. Franca, A. Danos, and A. Monkman, Chemrxiv. 2023, "Understanding the Key Requirements for Ultra-Efficient Sensitisation in Hyperfluorescence OLEDs."
[6] J. Liu, J. Liu, H. Li, Z. Bin, and J. You, Angew. Chem. Int. Ed. 2023, 62, e202306471
[7] Y. H. Jung, D. Karthik, H. Lee, J. H. Maeng, K. J. Yang, S. Hwang, and J. H. Kwon, ACS Appl. Mater. Interfaces 2021, 13, 17882-17891
[8] J. Yoo, Y. Choi, K. W. Kim, T. H. Ha, and C. W. Lee, Dyes and Pigments 2023, 214, 111200

