Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supporting information

Tae Hoon Ha, Jeong Yeol Yoo, Seung Wan Kang and Chil Won Lee*

Department of Chemistry, Dankook University, Cheonan 31116, Korea

*Corresponding author. Email: <u>chili@dankook.ac.kr</u>; Fax: +82-31-8021-7218.

• ¹H and ¹³C NMR spectra and GC-Mass data

Fig. S1. ¹H-NMR of tBN-4BF

Fig. S2. ¹³C-NMR of tBN-4BF

Fig. S3. GC-HRMS of tBN-4BF

Device structure

Fig. S4. Energy level diagram in Device A.

In this work, 1, and 3 wt% doped tBN-4BF device were prepared with Device A which TADF sensitizer is 0 wt%, and HF device were prepared with Device A which TADF sensitizer is 20 wt%;

Where EML is composed of;

Device A1 : 4CzIPN + tBN-4BF 1 wt%

Device A2 : 4CzIPN + tBN-4BF 3 wt%

Device A3 : TCz-4mCNTrz + tBN-4BF 1 wt%

Device A4 : TCz-4mCNTrz + tBN-4BF 3 wt%

Device A: To investigate the lifetimes performance of the 4CzIPN and TCz-4mCNTrz we fabricated the device with structure of ITO (50 nm) / HAT-CN (7 nm) / NPB (10 nm) / PCzAC (10 nm) / PIC-Trz + TADF sensitizer (0, 20 wt%) + tBN-4BF(1, 3 wt%) (20 wt%) (25 nm) / DDBFT (5 nm) / ZADN (40 nm) / LiF (1 nm) / Al (100 nm). In these devices, 1,4,5,8,9,11-Hexaazatriphenylenehexacarbonitrile (HAT-CN) as hole-injecting layer (HIL), *N*,*N*'-Di(1-naphthyl)-*N*,*N*'-diphenyl-(1,1'-biphenyl)-4,4'- diamine (NPB) as hole-transporting layer (HTL), 9,10-Dihydro-9,9-dimethyl-10- (9-phenyl-9*H*-carbazol-3-yl)-acridine (PCzAC) as electron-blocking layer (EBL), 2,4-Bis(dibenzo[*b*,*d*]furan-2-yl)-6-phenyl-1,3,5-triazine (DDBFT) as hole-blocking layer (HBL), and 2,2,2"2-[4-(9,10-Di-naphthalen-2-yl-anthracen-2-yl)-phenyl]-1-phenyl-1*H*-benzoimidazole (ZADN) as electron-transporting layer (ETL).

Fig. S5. Energy level diagram in Device B.

Device B: To investigate the efficiency device performance of the TCz-2mCNTrz, TCz-4mCNTrz and TCz-pCNTrz, we fabricated the device with structure of ITO (50 nm) / HAT-CN (7 nm) / TAPC (50nm) / mCP (10 nm) / PIC-Trz + TADF sensitizer (20 wt%) + tBN-4BF(1, 3 wt%) (25 nm) / TSPO1 (5 nm) / TmPyPB (40 nm) / LiF (1 nm) / Al (100 nm). In these devices, 1,4,5,8,9,11- Hexaazatriphenylenehexacarbonitrile (HAT-CN) as hole-injecting layer (HIL), 4,4'-Cyclohexylidenebi-s[*N*,*N*-bis(4-methylphenyl)benzenamine] (TAPC) as hole-transporting layer (HTL), 1,3-bis(9*H*-carbazolyl)benzene (mCP) as electron-blocking layer (EBL), diphenyl[4-

(triphenylsilyl)phenyl]phosphine oxide (TSPO1) as hole-blocking layer (HBL), and 2,2',2" 1,3,5-Tris(3-pyridyl-3-phenyl)benzene (TmPyPB) as electron-transporting layer (ETL).

Where EML is composed of;

Device B1 : TCz-4mCNTrz + tBN-4BF 1 wt%

Device B2 : TCz-4mCNTrz + tBN-4BF 3 wt%

Fig. S6. Device performance of 1, 3 wt% tBN-4BF doped in PIC-Trz (a) The CE - Luminance curves (b) The PE – Luminance curves.

Fig. S7. Device performance of HF device(where TADF sensitizer is 4CzIPN with Device A) (a) The current density-voltage-luminance (J-V-L) curves (b) The EQE-Luminance-Current efficiency curves (c) Normalized EL intensities at the current density of 1,000 nit (d) device lifetime curves at an initial luminance 5,000 nit.

Fig. S8. Device performance of HF device(where TADF sensitizer is TCz-4mCNTrz with Device A) (a) The current density-voltage-luminance (J-V-L) curves (b) The EQE-Luminance-Current efficiency curves (c) Normalized EL intensities at the current density of 1,000 nit (d) device lifetime curves at an initial luminance 5,000 nit.

Fig. S9. Transient PL decay spectra of doped films(20 wt% doping concentration) of 4CzIPN, and TCz-4mCNTrz with PIC-Trz as the host

Fig. S10. Transient PL decay spectra of doped films(1, 3 wt % of tBN-4BF and 20 wt% of TADF sensitizer with PIC-Trz as the host)

Fig. S11. Device performance of Device B1~2 (a) The CE - Luminance curves (b) The PE – Luminance curves.

Table S1. Transient PL properties of doped film of tBN-4BF with PIC-Trz host.

Material	$ au_p$ (ns) ^(a)	$ au_d$ $(\mu s)^{(b)}$	$A_{l}^{(c)}$	$A_2^{(d)}$	Total
1 wt%	9.00	5.30	15745.1	14540.9	30295.5
3 wt%	11.0	3.86	17997.3	12094.5	30094.1

^{*a*}Prompt fluorescence lifetime of the TADF materials; ^{*b*}Delayed fluorescence lifetime of the TADF materials; ^{*c*}Prompt components of integrating the transient PL curves; ^{*d*}Delayed components of integrating the transient PL curves

Table S2. PLQYs and transient PL properties of dopoed film of 4CzIPN and TCz-4mCNTrz with PIC

 Trz host.

Matarial	$ au_p$	$ au_d$	$arPhi_{ ext{Total}}$	$arPsi_{ m F}$	$arPsi_{ ext{TADF}}$	k_P	k _D	$k_{\rm r}^{\rm S}$	$k_{\rm nr}{}^{\rm T}$	$k_{\rm ISC}$	$k_{\rm RISC}$
Material	(ns) ^(a)	(µs) ^(b)	(%)	(%) ^(c)	$(\%)^{(d)}$	(107	(10 ⁵	(107	(10 ⁵	(107	$(10^5 \mathrm{s}^{-1})^{(j)}$

						$s^{-1})^{(e)}$	$s^{-1})^{(f)}$	$s^{-1})^{(g)}$	$s^{-1})^{(h)}$	$s^{-1})^{(i)}$	
4CzIPN	36.6	2.69	95.5	51.0	40.2	2.73	3.71	1.39	0.66	1.33	5.98
TCz-	20.1	2.55	00.2	566	25.0	2 42	2.02	1.04	1.((1 40	2 00
4mCNTrz	29.1	2.35	90.3	30.0	23.0	5.45	3.92	1.94	1.00	1.49	3.98

^{*a*}Prompt fluorescence lifetime of the TADF materials; ^{*b*}Delayed fluorescence lifetime of the TADF materials; ^{*c*}Prompt components of the PLQYs were calculated by integrating the transient PL curves; ^{*d*}Delayed components of PLQYs; ^{*e*}Rate constant of prompt components; ^{*f*}Rate constant of delay components; ^{*g*}Radiative decay rate; ^{*h*}Nonradiative decay rate; ^{*f*}Rate constants for ISC; ^{*f*}Rate constants for RISC

Table S3. Transient PL	properties of do	oped film of 4CzIPN	and TCz-4mCNTrz	with PIC-Trz host.
-------------------------------	------------------	---------------------	-----------------	--------------------

Material	$ au_p$ (ns) ^(a)	$ au_d$ $(\mu s)^{(b)}$	$A_{I}^{(c)}$	$A_2^{(d)}$	Total
4CzIPN	36.6	2.69	30346.4	26356.4	56850.1
TCz- 4mCNTrz	29.1	2.55	44021.8	26101.5	70273.3

^aPrompt fluorescence lifetime of the TADF materials; ^bDelayed fluorescence lifetime of the TADF materials; ^cPrompt components of integrating the transient PL curves; ^dDelayed components of integrating the transient PL curves

Table S4. PLQYs and transient PL properties of Device A2~4.

TADF	tBN-			
senitizer	4BF	$\tau^{HF}{}_p$	$\tau^{HF}{}_{d}$	$arPhi_{ ext{Total}}$
ratio	ratio	(ns) ^(a)	(µs) ^(b)	(%)
(wt%)	(wt%)			
4CzIPN	3	13.5	0.35	90.3
	TADF senitizer ratio (wt%) 4CzIPN	TADFtBN-senitizer4BFratioratio(wt%)(wt%)4CzIPN3	TADFtBN-senitizer4BF τ^{HF_p} ratioratio(ns) ^(a) (wt%)(wt%)13.5	TADFtBN-senitizer4BF τ^{HF}_p τ^{HF}_d ratioratio(ns) ^(a) (μ s) ^(b) (wt%)(wt%)

Device TCz-	1	11 /	0.40	07.0
A3 4mCNT	rz	11.4	0.49	97.9
Device TCz-	2	11.0	0.81	05.5
A4 4mCN7	rz	11.9	0.01	95.5

^aPrompt fluorescence lifetime of the TADF materials; ^bDelayed fluorescence lifetime of the TADF materials.

Table S5. FRET and DET calculation summary between TADF sensitizer(4CzIPN, and TCz-4mCNTrz),and tBN-4BF.

Film	TADF senitizer ratio (wt%)	tBN-4BF ratio (wt%)	J (10 ⁻²⁵ m ²) ^(a)	R_0) (nm) ^(b)	$arPhi_{ ext{FET}}$ (%) $^{(c)}$	$k_{\rm FET}$ (10 ⁷ ${ m s}^{-1})^{(d)}$	k_{DET} (10 ⁶ s ⁻¹) ^(e)
Device A2	4CzIPN	3	7.28	3.99	53.6	3.97	23.7
Device A3	TCz-4mCNTrz	1	5.68	3.82	68.8	6.03	14.6
Device A4	TCz-4mCNTrz	3	5.68	3.82	67.4	5.67	6.64

^{*a*}Overlap integral between the UV-vis spectra of tBN-4BF and PL spectra of all TADF sensitizers; ^{*b*}Förster energy transfer radii; ^{*c*}Efficient of Förster energy transfer; ^{*d*}Rate constants for Förster energy transfer; ^{*e*}Rate constant of Dexter energy transfer.

Table S6. The weakest bond dissociation energy values of calculated at anion, and cation state for4CzIPN, and TCz-4mCNTrz.

4CzIPN

TCz-4mCNTrz

TADF materials	Anion BDE (eV)	Cation BDE (eV)	Ref.
4CzIPN	1.78	3.87	[7]
TCz-4mCNTrz	3.15	4.17	[8]

Equation

The rate constants of ISC(k_{ISC}) and RISC(k_{RISC}) of tBN-4BF based on the following equations [1-3] :

$k_{\rm p} = 1/\tau_{\rm p}$	(1)
$k_{\rm r}^{\rm S} = \Phi_{\rm p}/k_{\rm p}$	(2)
$k_{TADF} = 1/\tau_{\rm d}$	(3)
$k_{nr}^{T} = k_{TADF} - \Phi_{p} \times k_{RISC}$	(4)

 $k_{\text{RISC}} = (k_{\text{p}} \times k_{\text{TADF}} \times \Phi_{\text{TADF}})/(k_{\text{ISC}} \times \Phi_{\text{p}})$ (6)

where, $k_{\rm P}$ is rate of prompt components, $k_{\rm TADF}$ is rate of delay components, $k_{\rm r}^{\rm s}$ is rate of radiative decay on the singlet excited state to ground state, $k_{\rm nr}^{\rm T}$ is rate of non-radiative decay on the triplet excited state to ground state, $k_{\rm ISC}$ is rate of ISC, $k_{\rm RISC}$ is rate of RISC, $\Phi_{\rm p}$ is prompt PLQY, and $\Phi_{\rm TADF}$ is delayed PLQY.

Eq. S1. Exciton Lifetime and Rate Constant equation.

By assuming (i) $k_{\text{PF}} \gg k_{\text{DF}}$ and (ii) $(k_r^{\text{S}}, k_{\text{ISC}} \text{ and } k_{\text{FET}}) \gg (k_{nr}^{\text{S}}, k_r^{\text{T}}, k_{nr}^{\text{T}} \text{ and } k_{\text{DET}})$, the average k_{FET} and k_{DET} can be calculated by Eq. S2 (5), (6), and (7);

$$\boldsymbol{\Phi}_{FRET} = 1 - (\tau^{HF}_{p} / \tau^{TADF}_{p}) \cdots (2)$$

$$k_{FRET} = \Phi_{FRET} / \tau^{HF}{}_{p} \cdots (3)$$

$$k_{DET} = 1/\tau^{HF}_{d} - 1/\tau_{d} + k_{RISC} \times k_{ISC} \times (\tau^{HF}_{p} - \tau_{p}) \quad \dots \qquad (4)$$

where, k^2 is the dipole-dipole interaction(in this study 2/3 was used which is the value for a random distribution), N_A is the Avogadro constant, η is the refractive index of the film.[4-6]

Eq. S2. Equation of Förster energy transfer radius and rate constant of Förster resonance energy transfer.

Reference

- [1] R. Pei, J. Lou, G. Li, H. Liu, X. Yin, C. Zhou, Z. Wang, and C. Yang, *Chemical Engineering Journal* **2022**, 437, 135222
- [2] J. Huang, H. Nie, J. Zeng, Z. Zhuang, S. Gan, Y. Cai, J. Guo, S. Su, Z. Zhao, and B. Z. Tang, Angew. Chem. Int. Ed 2017, 56, 12971-12976
- [3] D. Zhou, G. S. M. Tong, G. Chen, Y. Tang, W. Liu, D. Ma, L. Du, J. Chen, and C. Che, *Adv. Mater.*2022, 34, 2206598
- [4] W. Xie, X. Peng, M. Li, W. Qiu, W. Li, Q. Gu, Y. Jiao, Z. Chen, Y. Gan, K. K. Liu, and S. su, *Adv. Optical Mater.* 2022, 10, 2200665
- [5] K. Stavrou, L. G. Franca, A. Danos, and A. Monkman, *Chemrxiv*. **2023**, "Understanding the Key Requirements for Ultra-Efficient Sensitisation in Hyperfluorescence OLEDs."
- [6] J. Liu, J. Liu, H. Li, Z. Bin, and J. You, Angew. Chem. Int. Ed. 2023, 62, e202306471
- [7] Y. H. Jung, D. Karthik, H. Lee, J. H. Maeng, K. J. Yang, S. Hwang, and J. H. Kwon, *ACS Appl. Mater. Interfaces* 2021, 13, 17882-17891
- [8] J. Yoo, Y. Choi, K. W. Kim, T. H. Ha, and C. W. Lee, Dyes and Pigments 2023, 214, 111200