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Figure S1. Molecular structure of BMIB IL. 

 
Figure S2. (a) Schematic representation of crystallization rate over time for MAPbBr3 SCs 

using ITC method at 80°C. (b) Image of as-grown MAPbBr3 SCs. 

 
Figure S3. (a) Schematic representation of crystallization rate over time for MAPbBr3 SCs 

using ITC method at 80°C. (b) Image of as-grown MAPbBr3 SC in the presence of BMIB (5 

%mol). 
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Figure S4. Photographs of MAPbBr3 solution heated at 60°C for 12 h with (a) 1 mol% and (b) 

3 mol% BMIB IL. 

 

 

Figure S5. Image of crystallization process without and with 5 mol% BMIB IL at 80°C as a 

function of time. 
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Figure S6. 1H NMR spectrum of BMIB and MAPbBr3 crystals with 5 mol% of BMIB 

measured in DMSO-d6 solution. 

 

 

Figure S7. 1H NMR spectrum of BMIB and mixture of BMIB : PbBr2 (1:1) in DMSO-d6 

solution. 
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Figure S8. Conductivity of the reference and BMIB-based MAPbBr3 SCs. 
 

 
Figure S9. (a) Time-resolved photoluminescence (TRPL) of the three different reference and 

BMIB-based MAPbBr3 SCs. 

 

Figure S10. Intensity-dependent transient photoresponse of the reference MAPbBr3 SC-based 

PD and BMIB-based PD under light pulse. 
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Figure S11. I−V characteristics at 50 W cm−2 in forward and reverse scan directions for both 

the MAPbBr3 SC-based PD. Scan rate: 100 mV s-1. 

 
Figure S12. Response speed of the reference and BMIB-based PDs at 1 mW cm–2 irradiance 

power  of green light (530 nm) at 2 V. 

 

Figure S13. Functional stability of the reference and BMIB-based PDs  under 1 mW cm–2 

irradiance power of green light (530 nm) at 2 V. 
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Table S1. Comparison of nucleation time and growth time of MAPbBr3 SCs. 

Methods Temperature Nucleation time SCs / growth time 

without (reference) 60 °C N/A NA / 12 h 
80 °C 30 min Large SCs / 4h 

with BMIB 1 mol% 60 °C 5 h Small SCs / 24 h 
with BMIB 3 mol% 60 °C 4 h Small SCs / 24 h 
with BMIB 5 mol% 60 °C 90 min Large SCs / 12h 
with BMIB 10 mol% 60 °C N/A NA / 12 h 
 

Table S2. Average growth rate of MAPbBr3 SCs. 

Methods Temperature Nucleation time 
Collected SCs 

weight after 6h 
growth time 

Average growth 
rate 

without 
(reference) 80 °C 

30 min 397  1.1 mg / 
min 

with BMIB 5% 60 min 286 mg 0.8 mg / min 
 

Table S3. Calculated lattice strain of reference and (b) BMIB-based MAPbBr3 SCs. 

 
peak position 2θ 

(deg) 

FWHM (deg) lattice strain (%) 
without 

(reference) 
with BMIB 5 

mol% 
without 

(reference) 
with BMIB 5 

mol% 
14.98 0.30 0.19 0.996 0.631 
30.22 0.29 0.23 0.469 0.372 
45.99 0.41 0.24 0.422 0.247 

 

Table S4. The comparison of the performance parameters for pure MAPbBr3 SC based PDs 
growth by ITC and our work. 

 

Device 
Growth 
temp. 
(°C) 

Seeded
/Addi 
tive 

Durat
ion 

Wavelengt
h (nm) / 
Bias (V) 

R 
(AW-1) 

D* 
Jones 

EQE 
(%) 

/Gain 

On/of
f time Ref 

Pt/MAPbBr3 
/Pt 80 - 4h 448 nm 

2 V 1.99 5.09 
× 1012 553  1 

Cr/MAPbBr3 
/Au 60 - 20 

days 
515 nm 

5 V 55.7  8 × 10
13 13453 

120 
ms / 

86 ms 
2 

Pt/MAPbBr3/
Pt 110 - - White light 

2V 0.059 - - 

<20 
ns / 
500 
µs 

3 
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Au/MAPbBr
3/Au 80 - - 350 nm - - 900 -/ 30 

µs 
4 

Au/MAPbBr
3/Au 85 seeded - 405 nm  

9.84 V 
0.038 
(110) - 0.113 

(110) 

0.153 
s / 

0.057 
s 

5 

Au/MAPbBr
3/Au 80 - - 576 nm 

2 V 5.3 7.4 × 
1011 1130 

3.90 
ms / 
4.09  
ms 

6 

C/MAPbBr3/
C 65 Seeded 6 h 473 nm 

5 V 5.49 5.35 
× 1011   7 

Pt/MAPbBr3/
Pt 

80 - 4 h 530 nm 
2V 3.5 7.8 × 

1012 839 

14.3 
ms / 
16.1 
ms This 

wor
k 

60 BMIB 
IL  12 h 530 nm 

2V 4.81 9.35 
× 1012 1124 

12.1 
ms / 
14.8 
ms 

 

Supplementary Note 1. The lattice strain from XRD was calculated by using the HighScore 

analysis software from PANanalytical. The lattice strain (%) is calculated by the tangent 

formula: 

𝑙𝑎𝑡𝑡𝑖𝑐𝑒	𝑠𝑡𝑟𝑎𝑖𝑛 = ,-./01.
2 3456

                             (S1) 

where, Bstruct describes the structural broadening by: 

𝐵89:;<9 = 	=𝐵>?8@	−	𝐵89B@                             (S2) 

where, Bobs and Bstd are breadth obtained from the sample to be analyzed and breadth obtained 

from the standard sample, respectively. 8 

Supplementary Note 2.  

Responsivity (R), Specific Detectivity (D*) and External Quantum Efficiency (EQE) are 

important parameters for a PD. The photoresponse (R) of the PD, was calculated using the 

formula:1 
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R = (Jph - Jd)/P              (S3) 

where the Jph is the photocurrent density, Jd is the dark current density, and P is the illumination 

power. The D* of the PD, was calculated by the equation; 1 

D* = R/√(2qJd)            (S4) 

where, q is the charge of electron. 

The EQE of the PDs were calculated by; 1 

EQE=𝑅ℎ𝑐/𝑒𝜆														(S5)	

The Rise time are calculated from time taken to reach 10% to 90% of the photocurrent value 

after switch on light and fall-time are calculated from time taken to decay 90% to 10% of the 

photocurrent value after switch off light of a PDs (extracted from the normalized 

photocurrents).9 
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