Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Realizing Efficient Photoluminescence Spectral Modulation via Sb³⁺/Ln³⁺ co-doped Doping in Cs₂NaInCl₆ Double Perovskites

Shuai Li, ‡ ^a Chunrong Zhu, ‡ ^a Jinjiang Wang, ^a Zheling Zhang, ^a Dongjie Wang, ^a Yiwen Chen, ^a Doudou Zhang, ^a Jing Wang, ^b and Jian Zhang*^a†

a. Engineering Research Center of Electronic Information Materials and Devices (Ministry of Education), Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic and Technology, Guilin 541004, China
b. Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
‡ These authors contributed equally to this work.

* Corresponding authors (Email: jianzhang@guet.edu.cn)

S1

Table S1. Tb³⁺ ion content for Tb³⁺-doped Cs₂NaIn_{0.95}Sb_{0.05}Cl₆ samples studied using inductively coupled plasma emission spectrometry. Sb³⁺ % and Tb³⁺ % is calculated following the equation $([Sb]/[In+Sb]) \times 100\%$ and $([Tb]/[In+Sb]) \times 100\%$, respectively.

Samples -	Precursor		Product	
	Sb / mmol	Tb / mmol	Sb ³⁺ %	Tb ³⁺ %
Tb ³⁺ -doped Cs ₂ NaIn _{0.95} Sb _{0.05} Cl ₆	0.05	0	0.34	0
	0.05	0.5	0.43	0.79
	0.05	1.0	0.37	1.76
	0.05	1.5	0.31	2.48
	0.05	2.0	0.31	3.70
	0.05	2.5	0.23	5.49

Table S2. Ho^{3+} ion content for Ho^{3+} -doped $Cs_2NaIn_{0.95}Sb_{0.05}Cl_6$ samples studied using inductively coupled plasma emission spectrometry. Sb^{3+} % and Ho^{3+} % is calculated following the equation ([Sb]/[In+Sb]) ×100% and ([Ho]/[In+Sb])×100%, respectively.

Samples -	Precursor		Product	
	Sb / mmol	Ho / mmol	Sb ³⁺ %	Ho ³⁺ %
$\mathrm{Ho}^{3+}\text{-}\mathrm{doped}$ $\mathrm{Cs}_{2}\mathrm{NaIn}_{0.95}\mathrm{Sb}_{0.05}\mathrm{Cl}_{6}$	0.05	0	0.34	0
	0.05	0.5	0.24	0.29
	0.05	1.0	0.22	1.50
	0.05	1.5	0.18	3.60
	0.05	2.0	0.20	7.25
	0.05	2.5	0.21	11.13

Samples	Lifetime (440 nm) / µs	Lifetime (547 nm) / ms	$\eta_{ m ET}$ / %
$Cs_2NaIn_{0.95}Sb_{0.05}Cl_6$	1.02	—	
$Cs_2NaIn_{0.95}Sb_{0.05}Cl_6{:}\ 0.5\ mmol\ Tb^{3+}$	1.02	6.34	0.2%
$Cs_2NaIn_{0.95}Sb_{0.05}Cl_6\text{: }1.0\ mmol\ Tb^{3+}$	1.00	6.35	2.3%
$Cs_2NaIn_{0.95}Sb_{0.05}Cl_6\text{: }1.5\ mmol\ Tb^{3+}$	0.95	6.60	7.0%
$Cs_2NaIn_{0.95}Sb_{0.05}Cl_6{:}\ 2.0\ mmol\ Tb^{3+}$	0.93	6.62	9.2%
$Cs_2NaIn_{0.95}Sb_{0.05}Cl_6$: 2.5 mmol Tb^{3+}	0.91	6.64	11.0%

Table S3. The TRPL lifetimes monitored at 440 and 547 nm and energy transfer efficiency (η_{ET}) for $\text{Cs}_2\text{NaIn}_{0.95}\text{Sb}_{0.05}\text{Cl}_6$: $y\text{Tb}^{3+}$ samples.

Table S4. The TRPL lifetimes monitored at 440 and 655 nm and energy transfer efficiency (η_{ET}) for Cs₂NaIn_{0.95}Sb_{0.05}Cl₆: *z*Ho³⁺ samples.

Samples	Lifetime (440 nm) / µs	Lifetime (655 nm) / ms	$\eta_{ m ET}$ / %
$Cs_2NaIn_{0.95}Sb_{0.05}Cl_6$	1.02		_
$Cs_2NaIn_{0.95}Sb_{0.05}Cl_6: 0.5 \text{ mmol Ho}^{3+}$	0.95	2.96	6.7%
Cs ₂ NaIn _{0.95} Sb _{0.05} Cl ₆ : 1.0 mmol Ho ³⁺	0.92	4.24	10.3%
$Cs_2NaIn_{0.95}Sb_{0.05}Cl_6$: 1.5 mmol Ho ³⁺	0.82	4.82	20.0%
$Cs_2NaIn_{0.95}Sb_{0.05}Cl_6$: 2.0 mmol Ho ³⁺	0.77	5.20	24.6%
Cs ₂ NaIn _{0.95} Sb _{0.05} Cl ₆ : 2.5 mmol Ho ³⁺	0.75	5.29	27.0%

Figure S1. a) The PL spectra, b) TRPL decay curves, c) PLQY curves, and d) PLE spectra monitored at 440 nm of Cs₂NaIn_{1-x}Sb_xCl₆DPs.

Figure S2. XRD patterns of the $Cs_2NaIn_{1-x}Sb_xCl_6$ crystals with different Sb³⁺ ion concentration.

Figure S3. XRD patterns of a) the $Cs_2NaIn_{0.95}Sb_{0.05}Cl_6$: yTb^{3+} crystals with different Tb^{3+} ion concentrations, b) the $Cs_2NaIn_{0.95}Sb_{0.05}Cl_6$: zHo^{3+} crystals with different Ho^{3+} ion concentrations, and c) the Tb^{3+} and Ho^{3+} co-doped $Cs_2NaIn_{0.95}Sb_{0.05}Cl_6$ crystals with different Ho^{3+} ion concentrations.

Figure S4. a) The XPS spectroscopy based on undoped and 1.5 mmol Tb^{3+} -doped $Cs_2NaIn_{0.95}Sb_{0.05}Cl_6$ crystal. b) the XPS pattern for Tb 3d, c) In 3d, and d) Cl 2p of the undoped and 1.5 mmol Tb^{3+} -doped $Cs_2NaIn_{0.95}Sb_{0.05}Cl_6$ crystal.

Figure S5. a) The XPS spectroscopy based on undoped and 2.0 mmol Ho^{3+} -doped $Cs_2NaIn_{0.95}Sb_{0.05}Cl_6$ crystal. b) the XPS pattern for Ho 3d, c) In 3d, and d) Cl 2p of the undoped and 2.0 mmol Ho^{3+} -doped $Cs_2NaIn_{0.95}Sb_{0.05}Cl_6$ crystal.

Figure S6. The PLQY of a) 1.5 mmol Tb³⁺-doped Cs₂NaIn_{0.95}Sb_{0.05}Cl₆: crystal, and b) 2.0 mmol Ho³⁺-doped Cs₂NaIn_{0.95}Sb_{0.05}Cl₆ crystal.

Figure S7. The near-infrared emission of 2.0 mmol Ho³⁺-doped Cs₂NaIn_{0.95}Sb_{0.05}Cl₆.

Figure S8. PLE spectra of $Cs_2NaIn_{0.95}Sb_{0.05}Cl_6$; yTb^{3+} a) emission wavelength at 440 nm, and b) emission wavelength at 547 nm.

Figure S9. PLE spectra of $Cs_2NaIn_{0.95}Sb_{0.05}Cl_6:zHo^{3+}$ a) emission wavelength at 440 nm, and b) emission wavelength at 655 nm.

Figure S10. The PL spectra of $Cs_2NaIn_{0.95}Sb_{0.05}Cl_6$:1.5 mmol Tb³⁺ crystal at different excitation wavelengths.

Figure S11. The TRPL curves of a) $Cs_2NaIn_{0.95}Sb_{0.05}Cl_6$: yTb^{3+} crystals at 547 nm, and b) $Cs_2NaIn_{0.95}Sb_{0.05}Cl_6$: zHo^{3+} crystals at 655 nm.

Figure S12. The PLQY curve of Tb^{3+} and Ho^{3+} co-doped $Cs_2NaIn_{0.95}Sb_{0.05}Cl_6$ sample.

Fig S13. The luminescence thermal stability of 20 cold and hot cycles. The PL spectra of a) $Cs_2NaIn_{0.95}Sb_{0.05}Cl_6$, b) Tb^{3+} -doped $Cs_2NaIn_{0.95}Sb_{0.05}Cl_6$, c) Ho^{3+} -doped $Cs_2NaIn_{0.95}Sb_{0.05}Cl_6$, and d) Tb^{3+} and Ho^{3+} co-doped $Cs_2NaIn_{0.95}Sb_{0.05}Cl_6$ samples.

Figure S14. The humidity stability of the prepared phosphor storage in the air for 270 days. The PL spectra of a) $Cs_2NaIn_{0.95}Sb_{0.05}Cl_6$, b) Tb^{3+} -doped $Cs_2NaIn_{0.95}Sb_{0.05}Cl_6$, c) Ho^{3+} -doped $Cs_2NaIn_{0.95}Sb_{0.05}Cl_6$, and d) Tb^{3+}/Ho^{3+} co-doped $Cs_2NaIn_{0.95}Sb_{0.05}Cl_6$ samples.

Figure S15. TGA curves of free-doped, Tb³⁺-doped, and Ho³⁺-doped Cs₂NaIn_{0.95}Sb_{0.05}Cl₆ crystals

under N_2 atmosphere in the temperature range of 25-1000 $^{\circ}C$ at a heating rate of 10 $^{\circ}C$ min $^{\text{-1}}$