SUPPLEMENTARY INFORMATION Rationally Designed Singlet Sink for Glassy Polymeric Photon

Upconverting Films

*Sonia T. Stanciu,^a Steponas Raišys,^b Karolis Kazlauskas,^b Yoan C. Simon a,c**

a. School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Dr.

#5050, Hattiesburg 39406, MS, USA

b. Institute of Photonics and Nanotechnology, Vilnius University, Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania

c. School of Molecular Sciences and Biodesign Center for Sustainable Macromolecular Materials and Manufacturing, Arizona State University, Tempe, AZ, 85281, USA

Figure S1. ¹H NMR spectroscopy of PTEA.

Figure S2. ¹³C NMR spectroscopy of PTEA.

Figure S3. Custom-made mechanical hot-press used for sample preparation in N_2 glovebox. Surface area: 100 x 40 mm. Heating power: 240 W (top and bottom heating elements have capability of being controlled separately). Pressing force: ~100 kg/cm². Heating temperature capability: from room temperature up to 300° C.

Figure S4. Molar extinction and normalized fluorescence spectra of PTEA $(1 \times 10^{-5}$ M) in THF. Excitation wavelength for fluorescence: 375 nm. Maximum molar extinction coefficient (MEC) at 407 $nm = 2.30 \times 10^4 \,\mathrm{M}^{-1} \mathrm{cm}^{-1}$. MEC at 430 nm = 2.24 $\times 10^4 \,\mathrm{M}^{-1} \mathrm{cm}^{-1}$

Figure S5. Absorbance profile of DPA in THF $(c = 4 \cdot 10^{-5} M)$ by UV-Vis spectroscopy.

Figure S6. Absolute fluorescence quantum yield (Φ_{FL}) of PTEA in THF. The Φ_{FL} of PTEA was measured at a concentration of 10-5 M by integrating sphere technique with a Horiba Scientific K-Sphere by exciting at 405 nm using a 90° angle geometry. F2 = integral of PTEA photoluminescence from 420 nm – 595 nm. $F1$ = integral of THF photoluminescence from 420 nm – 595 nm. A2 = integral of PTEA excitation from $395 - 415$ nm. A1 = integral of THF excitation from 395 nm $- 415$ nm.

Figure S7. Absorption cross section of PtOEP (multiplied by λ 4) in PMMA at 0.05 wt% and fluorescence spectra of UC films of DPA(40wt%)/PtOEP(0.05wt%)/PMMA and PTEA(0.25wt%)/DPA(40wt%)/PtOEP(0.05wt%)/PMMA. Excitation for fluorescence – 375 nm. Fluorescence spectra are normalized to integrated spectral area.

Our calculations of the overlap integral (*J*) for PTEA→PtOEP and DPA→PtOEP in UC films containing 0.05 wt% PtOEP, 40 wt% DPA and varying concentration (0-0.5 wt%) of PTEA confirm that *J* is larger for PTEA (*J*_{PTEA}=[1.8-2.1]×10⁸ nm⁶) compared to DPA (*J*_{DPA}=1.5×10⁸ nm⁶). Calculation results are provided in Table R1 below.

	0 0. <i>0 WOO</i> 1 1 DI M										
		PTEA	$J^{(1)}$	$\Phi_{\text{FL}}^{(2)}$	$R_0^{(3)}$	$d^{(4)}$	$\tau^{(5)}$	$k_F^{(6)}$			
		conc.									
No.		$wt\%$	nm ⁶	$\frac{0}{0}$	nm	nm	$\rm ns$	s^{-1}			
$\mathbf{1}$	+PtOEP DPA	$\boldsymbol{0}$	$1.5 \cdot 10^8$	18	2.77	1.05	3.8	$8.8 \cdot 10^{9}$			
$\overline{2}$		0.025	$1.8 \cdot 10^{8}$	27	3.05	11.4	4.6	$8.0 \cdot 10^{3}$			
3		0.05	$1.9 \cdot 10^{8}$	35	3.21	10.1	4.8	$2.1 \cdot 10^{4}$			
$\overline{4}$	+PtOEP	0.1	$2.0 \cdot 10^8$	35	3.25	8.84	4.8	$5.1 \cdot 10^{4}$			
5	PTEA	0.25	$2.0 \cdot 10^{8}$	44	3.38	7.46	5.4	$1.6 \cdot 10^{5}$			
6		0.5	$2.1 \cdot 10^{8}$	43	3.39	6.13	5.2	$5.4 \cdot 10^{5}$			

Table S1. Förster energy transfer rate calculation of UC films with 40wt% DPA, 0.05 wt% PtOEP and 0-0.5 wt% PTEA.

¹⁾ Spectral overlap integral. ²⁾ Fluorescence quantum yield. ³⁾ Förster radius. ⁴⁾ distance between

emitter/annihilator and PtOEP, $\sqrt{(C_{donor} + C_{acceptor}) + N_A}$, where $M \cdot (M - molar mass, \rho - density)$, $d = \frac{3}{6}$ 1 $\frac{1}{(c_{donor} + c_{acceptor}) \cdot N_A}$ where $c = \frac{wt \cdot \rho}{M}$ M *ρ*=1.18 g/cm³ was used in calculations). 5) singlet state lifetime. 6) Förster rate.

$$
J(\lambda) = \int \lambda^4 F_D(\lambda) \sigma_A(\lambda) d\lambda,
$$

where λ is the wavelength, F_D is the normalized fluorescence spectrum, and σ_A is absorption crosssection.

Förster radius calculated by:

Spectral overlap integral $J(\lambda)$ calculated by:

$$
R_0 = \sqrt[6]{\frac{9\Phi_{FL}\kappa^2}{128\pi^5 n^4}} J(\lambda),
$$

where Φ_{FL} is the fluorescence quantum yield, *κ* is dipole orientation factor (*κ* was assumed to be 0.845 $\sqrt{2/3}$ for amorphous film with randomly oriented dipoles. [M. Z. Maksimov, I. M. Rozman, Opt. Spectrosc. 1962, 12, 337.]), *n* is the refraction index.

Förster rate:

$$
k_F = \frac{1}{\tau} \left(\frac{R_0}{d}\right)^6.
$$

Despite shifting the emission spectrum away from the PtOEP Soret band, introducing PTEA also increases the overlap with its Q band, leading to a slightly larger *J.*

Figure S8. Thermogravimetric analysis (TGA) of DPA and PTEA to compare degradation temperature (10% mass loss). DPA 10% mass loss at 322 °C, PTEA 10% mass loss at 410 °C.

Figure S9. Differential scanning calorimetry (DSC) of DPA, PtOEP, and PTEA at various ramp rates detailed in graph title (°C/minute). First cool and second heat at identical ramp rates for all respective scans. First heat has been removed. All DSC curves are "exo up."

Figure S10. Emission spectrum as a function of ratio of PtOEP (excited species) and PTEA (quencher species) in THF. Excitation at 532 nm. PtOEP maximum emission at 645 nm. PTEA maximum emission 470 nm. *x* axis = wavelength, *y* axis = emission intensity (a.u.), *z* axis = ratio of PtOEP:PTEA. (0.1 mg PtOEP: "x" mg PTEA in 3.5 mL THF).

Figure S11. Fluorescence transients as a function of increasing PTEA concentration in PMMA matrix (drop-cast films) Excitation wavelength: 375 nm. (a) Measured at 442 nm and (b) measured at FL peak maximum. See **Table S2** for fitting parameters.

PTEA conc.	τ_{1}	f_1	τ_2	f ₂	τ_3	f_3	$<\tau>$				
in PMMA	ns		ns		ns		ns				
Measured at 442 nm											
0.1wt%		--	--	--	5.28	100	$5.28*$				
1wt%	--	--	$- -$	--	5.41	100	$5.41*$				
10wt%	--	--	1.95	62	5.57	38	3.33				
25wt%	--	--	0.86	67	3.32	33	1.67				
40wt%		--	0.51	72	2.3	28	1.01				
100wt%	--	--	0.29	87	1.88	13	0.50				
Measured at FL peak maximum											
0.1 wt $%$			--	--	5.41	100	$5.41*$				
1wt%	$- -$	--	--	--	5.52	100	$5.52*$				
10wt%	$- -$	--	2.91	63	7.14	37	4.48				
25wt%	0.76	33	2.48	57	8.56	10	2.52				
40wt%	0.58	41	1.96	49	7.07	10	1.91				
100wt%	0.49	20	2.15	39	7.80	41	4.13				

Table S2: Fitting parameters of FL transients of drop-cast PTEA/PMMA films.

*f*ⁱ – fractional intensity, *τⁱ –* FL lifetime, *<τ*> –singlet exciton lifetime calculated as *<τ*> = ∑ *f*ⁱ ·*τ*i. *- monoexponential FL decay constant (<*τ*> = *τ*).

Figure S12. Absorbance corrected FL spectra of PTEA doped PMMA films. Excitation at 375 nm.

Figure S13. Absorption spectra of DPA-free PMMA films doped with increasing concentration of PTEA (indicated).

Optical Microscopy Data

Figure S14. Microscope images of (a) 25 wt% PTEA and (b) 40 wt% PTEA doped into PMMA. (c) Neat PMMA. Images obtained with an Olympus BX-51 microscope working in dark field mode.

Figure S15. FL transients of sink-free UC films (40 wt% DPA) with varying PtOEP concentration (indicated). Excitation wavelength: 375 nm. Transients recorded at 436 nm. IRF – instrument response function.

Figure S16. (a) Normalized FL spectra and (b) transients of sink-free UC films (40 wt% DPA, 0.05 wt% PtOEP) with varying thicknesses (indicated). Excitation wavelength: 375 nm. Transients recorded at 436 nm. IRF – instrument response function.

Figure S17. Photos of six melt-processed PMMA films (PtOEP = 0.05 wt\% , DPA = 40 wt\%) with increasing PTEA content (indicated). Photos were taken under identical camera settings and excitation exposure at 532 nm.

Figure S18. FL transients of 0.25 wt% DPA (a) and 0.25 wt% PTEA (b) in PMMA films as a function of increasing PtOEP concentration. Excitation wavelength = 375 nm. Transients measured at emission maxima (407 nm for DPA and 446 nm for PTEA). IRF – instrument response function. Grey lines are mono-exponential fits. (c) FL quenching efficiency, calculated according to

Quenching efficiency = 1 - / $\tau_{w/pt0EP}$

where $\tau_{w/PLOEP}$ is FL lifetime with PtOEP and $\tau_{w/o\,PLOEP}$ is fluorescence lifetime without PtOEP. Despite similar quenching trends observed for both DPA- and PTEA-containing film sets upon increasing PtOEP concentration, DPA exhibited somewhat stronger overall quenching by PtOEP compared to PTEA (Figure S18c). Stern-Volmer quenching analysis yielded Stern-Volmer constants (K_{SV}) of $2.8 \cdot 10^2$ M⁻¹ and $2.0 \cdot 10^2$ M-1 for 0.25 wt% DPA and 0.25 wt% PTEA, respectively.

Figure S19. FL spectra (a) and transients of UC films measured at 410 nm (b) and 485 nm (c) as a function of singlet sink PTEA concentration. Excitation wavelength – 375 nm. IRF – instrument response function. See **Table S2** for fitting parameters and calculated energy transfer efficiency versus PTEA concentration in UC films.

Table S3. Fitting parameters of Fl transients of UC films and energy transfer efficiency. See **Figure S9** and **Figure 7** for plots.

 Φ_{ET} - energy transfer efficiency from DPA to PTEA calculated from the accelerated decay component of DPA. Φ ET=1- τ (DPA+PTEA)/ τ DPA.

Figure S20. UC intensity dependence on excitation power density. See **Figure 8** for determined UC threshold at increasing PTEA concentrations in PMMA films.

Figure S21. (a) The emission spectrum of PTEA (10 wt%)/PtOEP (0.2 wt%)/PMMA films, allowing for determination of the triplet energy level of PTEA, studying PAH phosphorescence at low temperatures (15 K). (b) The emission decay measured at 480 nm (within PTEA S_1 level) and 788 nm (within PTEA T_1 level). T_1 of PTEA (first vibronic peak) = 1.57 eV (T_1 of DPA = 1.72 eV), S_1 of PTEA – 2.70 eV. Emission transients of UC and Ph bands of PTEA with corresponding lifetimes indicated. The relation $\tau_{Ph} = 2 \times \tau_{UC}$ confirms that the emission band at 788 nm originates from the T₁ of PTEA.