Supplementary Information

Transient Polymer Electronics Enabled by Grafting of Oligo-3-hexylthiophenes onto Polycaprolactone

Eddie Wai Chi Chan^{a,b}, Xin Sun^{a,b}, Yuhka Uda^{a,b}, Bicheng Zhu^{a,b}, David Barker^{a,b}, Jadranka Travas-Seidic^{*a,b}

^aCentre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland - Waipapa Taumata Rau, 23 Symonds Street, Auckland, 1023, New Zealand ^bMacDiarmid Institute for Advanced Materials and Nanotechnology, Kelburn Parade, Wellington, 6140, New Zealand

Scheme S1: Synthesis of capping group 2-bromo-5-(bromomethyl)-3-hexylthiophene **3**.

Figure S1: ¹H NMR spectra of 2-(5-bromopentyl)-4-hexylthiophene **2**.

Figure S2: ¹H NMR spectra of 2-bromo-5-(bromomethyl)-3-hexylthiophene **3**.

Figure S3: ¹H NMR spectra of O3HT-**15**.

Figure S4: ¹H NMR spectra of O3HT-**30**.

Figure S5: Normalized FT-IR spectra of O3HT-**15** (A), O3HT-**30** (B), P(CL-*co*-AVL)-**LD** (C), P(CL-*co*-AVL)-**HD** (D), P(CL-*co*-AVL)-**LD***g*-O3HT-**15** (E), P(CL-*co*-AVL)-**HD**-*g*-O3HT-**15** (F), P(CL-*co*-AVL)-**LD**-*g*-O3HT-**30** (G) and P(CL-*co*-AVL)-**HD**-*g*-O3HT-**30** (H).

Figure S6: GPC trace of O3HT-15

Figure S7: GPC trace of O3HT-30

Scheme S2: Synthesis of 3-(prop-2-yn-1-yl)tetrahydro-2H-pyran-2-one 12 (alkyne-valerolactone).

Figure S8: ¹H NMR spectra of alkyne-valerolactone **12**.

Scheme S3: Synthesis of P(CL-co-AVL) 14.

Figure S9: ¹H NMR spectra P(CL-co-AVL)-LD.

Figure S10: ¹H NMR spectra of P(CL-co-AVL)-HD.

Table S1: Molecular weight of	determination of P(CL-	co-AVL) using (GPC analysis.
-------------------------------	------------------------	-----------------	---------------

Polymer	M _n (Da)	M _w (Da)	M _z (Da)	Ð	Length (mers)
P(CL- <i>co</i> -AVL)- LD	30640	38685	45999	1.26	340
P(CL- <i>co</i> -AVL)- HD	8631	11405	14695	1.32	103

Figure S11: GPC trace of P(CL-co-AVL)-LD.

Figure S12: GPC trace of P(CL-*co*-AVL)-**HD**.

Figure S13: GPC trace of P(CL-*co*-AVL)-**LD**-*g*-O3HT-**15**.

Figure S15: GPC trace of P(CL-*co*-AVL)-**LD**-*g*-O3HT-**30**.

Figure S16: GPC trace of P(CL-*co*-AVL)-**HD**-*g*-O3HT-**30**.

Figure S17: ¹H NMR spectra of P(CL-*co*-AVL)-**LD**-*g*-O3HT-**15**.

Figure S18: ¹H NMR spectra of P(CL-*co*-AVL)-**HD**-*g*-O3HT-**15**.

Figure S19: ¹H NMR spectra of P(CL-*co*-AVL)-**LD**-*g*-O3HT-**30**.

Figure S20: ¹H NMR spectra of P(CL-*co*-AVL)-**HD**-*g*-O3HT-**30**.

Sample	Film thickness (μm)	Conductivity (mS cm ⁻¹)
Р(CL <i>-co-</i> AVL)- LD - g-O3HT- 15	49 ± 5.5	$(2.86 \pm 0.2.45) \ge 10^{-2}$
Р(CL <i>-co-</i> AVL)- HD - g-O3HT- 15	52 ± 7.7	0.83 ± 0.07
Р(CL <i>-co-</i> AVL)- LD - g-O3HT -30	60 ± 4.1	0.87 ± 0.35
Р(CL <i>-co-</i> AVL)- HD - g-O3HT -30	47 ± 8.6	1.18 ± 0.41

Table S2: Conductivity (measured by 4-point probe method) and film thicknesses of the grafted P(CL-co-AVL)-g-O3HTs films on glass substrates (n \geq 3).

Figure S21. *I-V* curves (from 0 V to 1 V) of P(CL-*co*-AVL)-**HD**-*g*-O3HT-**30** at temperatures between room temperature (25 °C) and 45 °C.

Table S3: Temperature-dependent conductivities of the grafted P(CL-*co*-AVL)-**HD**-*g*-O3HT-30 calculated using the slopes from the linear parts of the curves in Figure S21.

Temperature, °C	Conductivity (mS cm ⁻¹)
25	0.02
30	0.85
35	0.89
40	0.93
45	1.00

Figure S22: Cyclic Voltammograms of O3HT-**15** (A), O3HT-**30** (B), P(CL-*co*-AVL)-**LD**-*g*-O3HT-**15** (C), P(CL-*co*-AVL)-**HD**-*g*-O3HT-**15** (D), P(CL-*co*-AVL)-**LD**-*g*-O3HT-**30** (F), cycled 50 cycles, with 1st, 2nd, 3rd and 50th scan shown.

Figure S23: UV-Vis adsorption spectra of A) O3HT-**15** (black), P(CL-*co*-AVL)-**LD**-*g*-O3HT-**15** (red) and P(CL-*co*-AVL-**HD**-*g*-O3HT-**15** (blue) and B) O3HT-**30** (black), P(CL-*co*-AVL-**LD**-*g*-O3HT-**30** (red) and P(CL-*co*-AVL)-**HD**-*g*-O3HT-**30** (blue) in THF at 0.1 mg/mL.

Figure S24: Fluorescence emission spectra of A) O3HT-**15** (black), P(CL-*co*-AVL)-**LD**-*g*-O3HT-**15** (red) and P(CL-*co*-AVL)-**HD**-*g*-O3HT-**15** (blue) and B) O3HT-**30** (black), P(CL-*co*-AVL)-**LD**-*g*-O3HT-**30** (red) and P(CL-*co*-AVL)-**HD**-*g*-O3HT-**15** (blue) in THF at 5 µg/mL.

Figure S25: SEC spectra of O3HT-**15** (A) and O3HT-**30** (B) drop casted on ITO glass slides, between 0.1 V to 1.0 V, smoothed with 3rd Order Polynomial Fit.

Figure S26: SEC spectra of P(CL-*co*-AVL)-**LD**-*g*-O3HT-**30** (A) and P(CL-*co*-AVL)-**HD**-*g*-O3HT-**30** (B) drop casted on ITO glass slides, between 0.1 V to 1.0 V, smoothed with 3rd Order Polynomial Fit.

Figure S27: A) DSC curves of O3HT-**15**, P(CL-*co*-AVL)-**LD**-*g*-O3HT-**15** (red) and P(CL-*co*-AVL)-**HD**-*g*-O3HT-**15**. B) DSC curves of O3HT-**30**, P(CL-*co*-AVL)-**LD**-*g*-O3HT-**30** (red) and P(CL-*co*-AVL)-HD-*g*-O3HT-**30** (blue).

Figure S28: DSC scan of P(CL-co-AVL)-LD.

Figure S29: DSC scan of P(CL-co-AVL)-HD.

Figure S30: Normalized XRD spectra of O3HT-**15** (black), P(CL-*co*-AVL)-**LD**-*g*-O3HT-**15** (red) and P(CL-*co*-AVL)-**HD**-*g*-O3HT-**15** (blue)

Figure S31: Normalized XRD spectra of O3HT-**30** (black), P(CL-co-AVL)-LD-g-O3HT-**30** (red) and P(CL-co-AVL)-HD-g-O3HT-**30**.

Figure S32: XRD spectra of (A) P(CL-co-AVL)-HD and (B) P(CL-co-AVL)-LD.

Figure S33: Optical photographs of PCL in water, 2 M TFA and 2 M NaOH at 0, 3 and 7 days.

Figure S34: Optical photographs of O3HT-15 and O3HT-30 in 2 M TFA and 2 M NaOH at 0, 3 and 7 days.

Table S4. Conducting polymer-based transient electronic materials

		Electrical	Degradation	5.6
Polymer		Properties	Method	Ref
P(CL- <i>co</i> -AVL)- <i>g</i> -O3HT	Degradable backbone	5.6 mS cm ⁻¹	Acid, base and enzymatic degradation	This study
Gelatin-graft-poly(3-	Degradable	1.65 ± 0.02 ×	enzymatic	1
hexylthiophene)	backbone	10 ⁻⁷ S/cm	degradation	
PPy/PVDF (polyvinylidene fluoride)-based nanofibers	Composite	12 to 24 S/cm	Acetone dissolution	2
PPy/chitosan	Composite	1 × 10 ⁻² S/cm	Lysozyme enzymatic degradation and <i>in</i> <i>vivo</i> degradation in rats	3
PEDOT:PSS/montmorillonite	Composite	8 to 16 S/cm	Ingestion by superworms	4
PEDOT/carboxymethyl chitosan	Composite	4.68 × 10 ⁻³ S/cm	Enzymatic degradation lysozyme	5
Oligoaniline-based electroactive blocks	Degradable backbone	8.34 x 10 ⁻⁸ S/cm	Enzymatic degradation	6
Quaterthiophene- <i>co</i> -adipic acid polyester (QAPE)	Degradable backbone	10 ⁻⁴ S/cm	Enzymatic degradation	7
Polyester organogels with aniline oligomers	Degradable backbone	1.03 x 10 ⁻⁵ S/cm	Acid hydrolysis	8,9
Poly(diketopyrrolopyrrole- phenylene diamine) (PDPP- PD)	Degradable semiconductor	Charge mobility 0.03 cm ² /V·s	Acid-meditated degradation	10,11
Poly(naphthalene diimide- co-(E,E)-N,N'1,4- phenylenebis[1-(2- thienyl)methanimine]) (PNDIT2/IM-f)	Degradable semiconductor	electron mobility (μe) 0.04 cm2 V ⁻¹ s ⁻¹	Acid hydrolysis	12
Water-soluble transient conjugated polymer based on polypyrrole (PPY)	Soluble copolymer	Capacitance value 73 mF/g	Water soluble	13

References

- 1 X. Sun, E. W. C. Chan, Q. Chen, N. Kirby, J. Yang, J. P. Mata, R. L. Kingston, D. Barker, L. Domigan and J. Travas-Sejdic, *ACS Appl. Mater. Interfaces*, 2024, **16**, 23872–23884.
- 2 S. Veeralingam and S. Badhulika, ACS Appl. Bio Mater., 2021, 4, 14–23.
- 3 Y. Wan, A. Yu, H. Wu, Z. Wang and D. Wen, J. Mater. Sci. Mater. Med., 2005, 16, 1017–1028.
- 4 S. Lee, Y. Hong and B. S. Shim, Adv. Sustain. Syst., 2022, 6, 2100056.
- 5 C. Xu, S. Guan, S. Wang, W. Gong, T. Liu, X. Ma and C. Sun, *Mater. Sci. Eng. C*, 2018, 84, 32–43.
- 6 J. G. Hardy, D. J. Mouser, N. Arroyo-Currás, S. Geissler, J. K. Chow, L. Nguy, J. M. Kim and C. E. Schmidt, *J. Mater. Chem. B*, 2014, **2**, 6809–6822.
- 7 N. K. E. Guimard, J. L. Sessler and C. E. Schmidt, *Macromolecules*, 2009, 42, 502–511.
- 8 B. Guo, A. Finne-Wistrand and A.-C. Albertsson, *Macromolecules*, 2011, 44, 5227–5236.
- 9 B. Guo, A. Finne-Wistrand and A.-C. Albertsson, J. Polym. Sci. Part Polym. Chem., 2011, 49, 2097–2105.
- 10 T. Lei, M. Guan, J. Liu, H.-C. Lin, R. Pfattner, L. Shaw, A. F. McGuire, T.-C. Huang, L. Shao, K.-T. Cheng, J. B.-H. Tok and Z. Bao, *Proc. Natl. Acad. Sci.*, 2017, **114**, 5107–5112.
- 11 H. Tran, V. R. Feig, K. Liu, H.-C. Wu, R. Chen, J. Xu, K. Deisseroth and Z. Bao, ACS Cent. Sci., 2019, 5, 1884–1891.
- 12 H. Park, Y. Kim, D. Kim, S. Lee, F. S. Kim and B. J. Kim, Adv. Funct. Mater., 2022, 32, 2106977.
- 13 J. Moon, V. Diaz, D. Patel, R. Underwood and R. Warren, Org. Electron., 2022, 101, 106412.