Supplementary Information

Turn-on Fluorescence Humidity Sensing Based on Cs₄PbBr₆ Nanocrystal Array

Yelu Wei,^a Yang Liu,^a Yuchen Zhang,^a Jiahao Pan,^a Shuhan Pan,^a Ying Wei,^a Bingcai Pan,^b Zhenda Lu^{*ab} and Xing Xing^{*ab}

^aCollege of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China

^bSchool of the Environment, Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China

*E-mail: luzhenda@nju.edu.cn; xxing90@foxmail.com

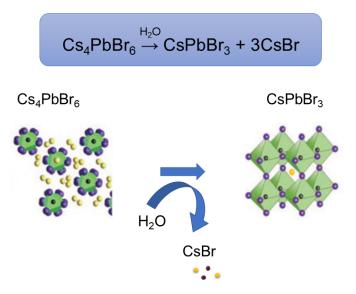
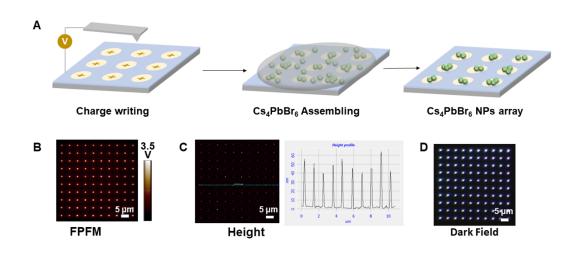



Fig. S1. The Schematic illustration of crystal structure change and transformation process from Cs_4PbX_6 to $CsPbX_3$ after water treatment.

Fig. S2. Fabrication process for the Cs_4PbBr_6 nanoparticlas (NPs) array using a modified AFM nanoxerography technique. (A) The schematic diagram of assembly process which consists of two steps: charge writing and Cs_4PbBr_6 NPs assembly. (B) Surface potential characterization using KPFM scanning of AFM. (C) Height scan of Cs_4PbBr_6 NPs array after assembly and its corresponding height distribution on the left line. (D) Dark field imaging of Cs_4PbBr_6 NPs array after assembly.

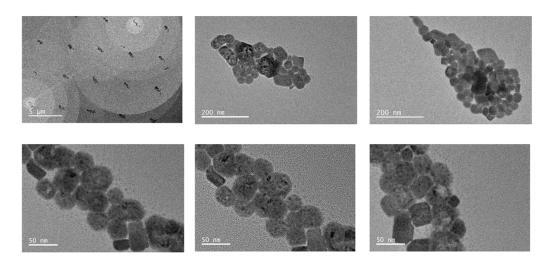


Fig. S3. TEM images of Cs₄PbBr₆ NPs array before exposed to water.

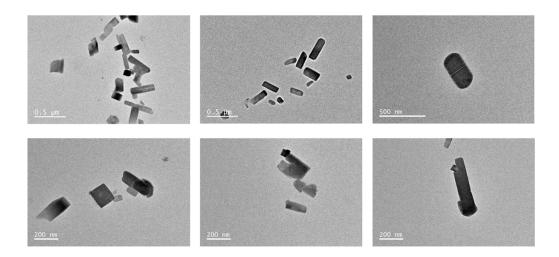


Fig. S4. TEM image of $CsPbBr_3$ array transformed by Cs_4PbBr_6 NPs array after exposed to 70% humidity for 10 minutes

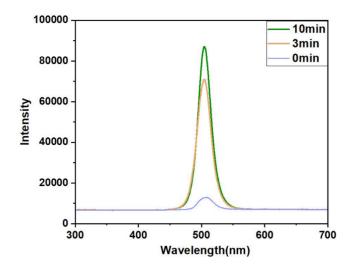
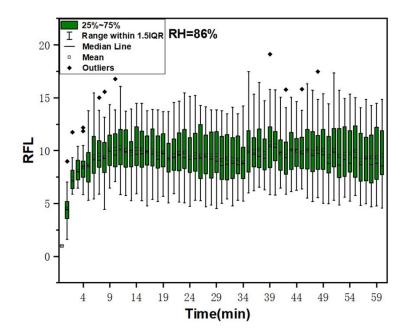



Fig. S5. The spectrums over time at a relative humidity of 80%.

Fig. S6. Box plot the relative fluorescence intensity (RFI) for the entire duration of 60 minutes.