Supplementary material for

Carbon vacancies regulation strategy for boosting the high-temperature microwave absorption performance of $(Co_{0.2}Mo_{0.2}V_{0.2}Nb_{0.2}Ta_{0.2})C_x$ high-entropy carbides

Yuping Duan^{*1}, Likun Niu¹, Zerui Li¹, Xiaoji Liu¹, Huifang Pang¹, Jiabin Ma¹, Jian Gong², Jiangang Wang²

1. Key Laboratory of Solidification Control and Digital Preparation Technology

(Liaoning Province), School of Materials Science and Engineering, Dalian University

of Technology, Dalian 116085, P.R. China

2. China-Blarus Belt and Road Joint Laboratory on Electromagnetic Environment

Effect, Taiyuan 030032, P. R. China.

*Corresponding authors. E-mail address: <u>duanyp@dlut.edu.cn</u> (Y. Duan). ORCID iD: 0000-0001-5599-7168

1.Supplementary Figures

Fig. S1. Synthesis of $(Co_{0.2}Mo_{0.2}V_{0.2}Nb_{0.2}Ta_{0.2})C_x$ and test sample preparation process.

Fig. S2. (a) XRD patterns of $(Co_{0.2}Mo_{0.2}V_{0.2}Nb_{0.2}Ta_{0.2})C$ HECs before and after

high temperature; (b) TGA curves of (Co_{0.2}Mo_{0.2}V_{0.2}Nb_{0.2}Ta_{0.2})C HECs.

Fig. S3. (a) XPS data of C 1s of (Co_{0.2}Mo_{0.2}V_{0.2}Nb_{0.2}Ta_{0.2})C_x with different graphite contents; (b) EPR curves of (Co_{0.2}Mo_{0.2}V_{0.2}Nb_{0.2}Ta_{0.2})C_x with different graphite contents.

Fig. S4. (a) (Co_{0.2}Mo_{0.2}V_{0.2}Nb_{0.2}Ta_{0.2})C supercell for density functional theory

(DFT) calculations; (b) The density of states (DOS) of the

 $(Co_{0.2}Mo_{0.2}V_{0.2}Nb_{0.2}Ta_{0.2})C_x.$

Fig. S5. Conductivity of $(Co_{0.2}Mo_{0.2}V_{0.2}Nb_{0.2}Ta_{0.2})C_x$ HECs in the temperature

range of 293-573 K.

Fig. S6. Conductivity loss and polarization loss of (Co_{0.2}Mo_{0.2}V_{0.2}Nb_{0.2}Ta_{0.2})C_x highentropy ceramics at 293 K-573 K.

Fig. S7 (a-c) Hysteresis lines of samples at different temperatures.

(d) Coercivity and its reduction at different temperatures

Fig. S8. RL values of $(Co_{0.2}Mo_{0.2}V_{0.2}Nb_{0.2}Ta_{0.2})C_x$ HECs at different temperatures

with different thicknesses.

Fig. S9. Magnetic loss angle tangent $(tan\delta_M)$ and dielectric loss angle tangent $(tan\delta_E)$

of $(Co_{0.2}Mo_{0.2}V_{0.2}Nb_{0.2}Ta_{0.2})C_x$ HECs at different temperatures.

Fig. S10. Impedance matching curves of (Co_{0.2}Mo_{0.2}V_{0.2}Nb_{0.2}Ta_{0.2})C_x HECs at

different temperatures.

2. Supplementary Table

ceramics					
Element	wt%	at%			
Со	10.71	9.64			
Мо	18.32	10.12			
V	9.03	9.40			
Nb	16.06	9.16			
Та	33.73	9.88			
С	11.58	51.08			
Zr	0.42	0.24			
O	0.15	0.48			

Table S1. Content of various elements in $(Co_{0.2}Mo_{0.2}V_{0.2}Nb_{0.2}Ta_{0.2})C$ high entropy

Table S2. Carbon and oxygen content of $(Co_{0.2}Mo_{0.2}V_{0.2}Nb_{0.2}Ta_{0.2})C_mO_n$

Lable	C-1.0	C-0.9	C-0.8
C content (wt%)	10.16	9.67	9.23
O content (wt%)	0.12	0.16	0.19
C stoichiometry coefficient (m)	-	0.93	0.85
O stoichiometry coefficient (n)	-	0.02	0.02
Vacancies concentration (Vc, %)	-	5	13

HECs with their carbon, oxygen and vacancy stoichiometry.

performance.							
Materials	RL _{min} (dB)	Maximum EAB (GHz)	Temperature stability (GHz)	Thickness (mm)	Ref.		
Si ₃ N ₄ - SiC/SiO ₂	-52.5	4.18	0.15	3.4	[1]		
Fe-SiC/SiO ₂	-14.0	3.40	3.30	3.0	[2]		
TiN/BN/SiO ₂	-17.0	3.26	0.99	2.0	[3]		
TiN/ Fe ₂ Ni ₂ N/SiO ₂	-22.0	3.89	0.36	2.8	[4]		
Ni-SiC	-45.5	3.99	0.95	2.1	[5]		
RGO/Si ₃ N ₄	-16.5	4.20	0	4.3	[6]		
Si ₃ N ₄ /SiC Aerogels	-45.0	4.20	0	4.0	[7]		
FeCo@ZnO	-20.8	3.30	0.90	1.9	[8]		
$\begin{array}{c} Ti_3SiC_2/Al_2O_3-\\ 13\%TiO_2 \end{array}$	-51.8	2.12	1.25	2.2	[9]		
SiBCNHf	-15.0	3.67	0.27	2.6	[10]		
C-0.8	-57.8	3.34	0.42	2.2	This work		

Table S3. Typical high-temperature microwave absorption materials and their related

3. Supplementary Note

1. Details of mixing of HECs with SiO₂ powder

Firstly, weigh the HECs powders and SiO₂ powders according to the mass percentage. Next, place the weighed powder into a beaker filled with alcohol. Then, perform ultrasonic treatment on the beaker for 30 minutes. Afterwards, dry and grind.

2. First-principles density functional theory (DFT) calculation methods

The density of states of $(Co_{0.2}Mo_{0.2}V_{0.2}Nb_{0.2}Ta_{0.2})C_x$ are investigated based on density functional theory (DFT) using the Vienna-Ab Initio Calculation Simulation Package (VASP). The solid solution structure of $(Co_{0.2}Mo_{0.2}V_{0.2}Nb_{0.2}Ta_{0.2})C_x$ is modeled using the Special Quasi-random Structure (SQS). In this study, a 2 × 2 × 5 SQS supercell with 160 atoms is generated using the "MCSQS" code of the Alloy Theoretic Automated Toolkit (ATAT). For the SQS model described above, a 4 × 4 × 4 Monkhorst k-point grid is adopted. The smearing (spreading) parameter and the plane wave energy cutoff is set to 0.2 eV and 400 eV, respectively. The exchangecorrelation function is approximated using a Projector-Augmented Wave (PAW) potential and a modified Perdew-Burke-Ernzerhof (PBE) gradient. First, the structure is optimized without considering spin polarization, followed by static self-consistent and non-self-consistent calculations for the optimized structure based on spin polarization.

Supplementary References

[1] M. Li, X. Yin, G. Zheng, M. Chen, M. Tao, L. Cheng, L. Zhang, Hightemperature dielectric and microwave absorption properties of Si_3N_4 –SiC/SiO₂ composite ceramics, Journal of Materials Science, 50 (2014) 1478-1487.

[2] X. Yuan, L. Cheng, Y. Zhang, S. Guo, L. Zhang, Fe-doped SiC/SiO₂ composites with ordered inter-filled structure for effective high-temperature microwave attenuation, Materials & Design, 92 (2016) 563-570.

[3] Y. Shi, D. Li, H. Si, Z. Jiang, M. Li, C. Gong, TiN/BN composite with excellent thermal stability for efficiency microwave absorption in wide temperature spectrum, Journal of Materials Science & Technology, 130 (2022) 249-255.

[4] Y. Shi, D. Li, H. Si, Y. Duan, C. Gong, J. Zhang, TiN/Fe₂Ni₂N/SiO₂ composites for magnetic-dielectric balance to facilitate temperature-stable broadband microwave absorption, Journal of Alloys and Compounds, 918 (2022) 165603.

[5] J. Yuan, H. Yang, Z. Hou, W. Song, H. Xu, Y. Kang, H. Jin, X. Fang, M. Cao, Nidecorated SiC powders: Enhanced high-temperature dielectric properties and microwave absorption performance, Powder Technology, 237 (2013) 309-313.

[6] Z. Hou, X. Yin, H. Xu, H. Wei, M. Li, L. Cheng, L. Zhang, Reduced Graphene Oxide/Silicon Nitride Composite for Cooperative Electromagnetic Absorption in Wide Temperature Spectrum with Excellent Thermal Stability, ACS Appl Mater Interfaces, 11 (2019) 5364-5372.

[7] Z. Cai, L. Su, H. Wang, M. Niu, L. Tao, Lu, L. Xu, M. Li, H. Gao, AlternatingMultilayered Si₃N₄/SiC Aerogels for Broadband and High-Temperature

Electromagnetic Wave Absorption up to 1000 degrees C, ACS Appl Mater Interfaces, 13 (2021) 16704-16712.

[8] K. Peng, C. Liu, Y. Wu, G. Fang, G. Xu, Y. Zhang, C. Wu and M. Yan, Journal of Materials Science & Technology, 2022, 125, 212-221.

[9] W.C. Wang, L.Y. Wang, G. Liu, C.Q. Ge, L. Wang, B. Wang, J. Huang, *Journal of the European Ceramic Society*, 2024, 44, 254-260.

[10] Y. Song, Z.Y. Liu, X.C. Zhang, R.Q. Zhu, Y.W. Zhang, P.G. Liu, L.H. He, J. Kong, Journal of Materials Science & Technology, 2022, 126, 215-227.