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1.Supplementary Figures

Fig. S1. Synthesis of (Co0.2Mo0.2V0.2Nb0.2Ta0.2)Cx and test sample preparation process.

Fig. S2. (a) XRD patterns of (Co0.2Mo0.2V0.2Nb0.2Ta0.2)C HECs before and after 

high temperature; (b) TGA curves of (Co0.2Mo0.2V0.2Nb0.2Ta0.2)C HECs.



   

Fig. S3. (a) XPS data of C 1s of (Co0.2Mo0.2V0.2Nb0.2Ta0.2)Cx with 

different graphite contents; (b) EPR curves of 

(Co0.2Mo0.2V0.2Nb0.2Ta0.2)Cx with different graphite contents.

Fig. S4. (a) (Co0.2Mo0.2V0.2Nb0.2Ta0.2)C supercell for density functional theory 

(DFT) calculations; (b) The density of states (DOS) of the 

(Co0.2Mo0.2V0.2Nb0.2Ta0.2)Cx.



Fig. S5. Conductivity of (Co0.2Mo0.2V0.2Nb0.2Ta0.2)Cx HECs in the temperature 

range of 293– 573 K.

Fig. S6. Conductivity loss and polarization loss of (Co0.2Mo0.2V0.2Nb0.2Ta0.2)Cx high-
entropy ceramics at 293 K-573 K.



 

Fig. S7 (a-c) Hysteresis lines of samples at different temperatures.

(d) Coercivity and its reduction at different temperatures



Fig. S8. RL values of (Co0.2Mo0.2V0.2Nb0.2Ta0.2)Cx HECs at different temperatures 

with different thicknesses.



Fig. S9. Magnetic loss angle tangent (tanδM) and dielectric loss angle tangent (tanδE) 

of (Co0.2Mo0.2V0.2Nb0.2Ta0.2)Cx HECs at different temperatures.



Fig. S10. Impedance matching curves of (Co0.2Mo0.2V0.2Nb0.2Ta0.2)Cx HECs at 

different temperatures.



2. Supplementary Table

Table S1. Content of various elements in (Co0.2Mo0.2V0.2Nb0.2Ta0.2)C high entropy 

ceramics

Element wt% at%
Co 10.71 9.64
Mo 18.32 10.12
V 9.03 9.40
Nb 16.06 9.16
Ta 33.73 9.88
C 11.58 51.08
Zr 0.42 0.24
O 0.15 0.48

Table S2. Carbon and oxygen content of (Co0.2Mo0.2V0.2Nb0.2Ta0.2)CmOn 

HECs with their carbon, oxygen and vacancy stoichiometry. 

Lable C-1.0 C-0.9 C-0.8

C content (wt%)

O content (wt%)

C stoichiometry coefficient (m)

10.16

0.12

-

9.67

0.16

0.93

9.23

0.19

0.85

O stoichiometry coefficient (n) - 0.02 0.02

Vacancies concentration (Vc, %) - 5 13



Table S3. Typical high-temperature microwave absorption materials and their related 

performance.

Materials RLmin
(dB)

Maximum 
EAB

(GHz)

Temperature
stability
(GHz)

Thickness
(mm) Ref.

Si3N4– SiC/SiO2 −52.5 4.18 0.15 3.4 [1]

Fe-SiC/SiO2 −14.0 3.40 3.30 3.0 [2]

TiN/BN/SiO2 −17.0 3.26 0.99 2.0 [3]

TiN/ 
Fe2Ni2N/SiO2

−22.0 3.89 0.36 2.8 [4]

Ni-SiC −45.5 3.99 0.95 2.1 [5]

RGO/Si3N4 −16.5 4.20 0 4.3 [6]

Si3N4/SiC 
Aerogels −45.0 4.20 0 4.0 [7]

FeCo@ZnO −20.8 3.30 0.90 1.9 [8]

Ti3SiC2/Al2O3-
13%TiO2

−51.8 2.12 1.25 2.2 [9]

SiBCNHf −15.0 3.67 0.27 2.6 [10]

C-0.8 −57.8 3.34 0.42 2.2 This 
work



3. Supplementary Note

1. Details of mixing of HECs with SiO2 powder

Firstly, weigh the HECs powders and SiO2 powders according to the mass 

percentage. Next, place the weighed powder into a beaker filled with alcohol. Then, 

perform ultrasonic treatment on the beaker for 30 minutes. Afterwards, dry and grind. 

2. First-principles density functional theory (DFT) calculation methods

The density of states of (Co0.2Mo0.2V0.2Nb0.2Ta0.2)Cx are investigated based on 

density functional theory (DFT) using the Vienna-Ab Initio Calculation Simulation 

Package (VASP). The solid solution structure of (Co0.2Mo0.2V0.2Nb0.2Ta0.2)Cx is 

modeled using the Special Quasi-random Structure (SQS). In this study, a 2 × 2 × 5 

SQS supercell with 160 atoms is generated using the "MCSQS" code of the Alloy 

Theoretic Automated Toolkit (ATAT). For the SQS model described above, a 4 × 4 × 

4 Monkhorst k-point grid is adopted. The smearing (spreading) parameter and the 

plane wave energy cutoff is set to 0.2 eV and 400 eV, respectively. The exchange-

correlation function is approximated using a Projector-Augmented Wave (PAW) 

potential and a modified Perdew-Burke-Ernzerhof (PBE) gradient. First, the structure 

is optimized without considering spin polarization, followed by static self-consistent 

and non-self-consistent calculations for the optimized structure based on spin 

polarization.
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