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1. General descriptions

1.1. Materials and characterization

All the materials and solvents were obtained commercially and used as received without further
purification. Proton NMR spectra were measured on a Bruker AV400 spectrometer. High resolution
mass spectra (HRMS) were recorded with an Agilent Technologies 6530 Accurate-Mass Q-TOF
mass spectrometer. X-ray crystallography diffraction was carried out on a Bruker SMART Apex
CCD diffractometer. Thermogravimetric analysis (TGA) was recorded on FBS-WTGA instrument.
Cyclic voltammetry (CV) was measured on a CHI1140B Electrochemical Analyzer through a three-
electrode system with a glassy carbon disk as the working electrode, platinum plate as the counter
electrode and Ag/AgCl as the reference electrode. UV-Vis absorption spectra were recorded on a
Purkinje General TU-1901 spectrophotometer. The PL spectra were recorded on a PerkinElmer LS-
55 fluorescence spectrophotometer. The PL quantum efficiency and lifetime were measured with an
Edinburgh FLS980 instrument. The circular dichroism (CD) spectra were measured on a Jasco J-810
circular dichroism spectrometer with ‘Low’ sensitivity. The scan speed was set as 200 nm/min with
1 nm resolution and a respond time of 1.0 s. The circularly polarized photoluminescence (CPPL)
spectra were measured on a Jasco CPL-300 spectrophotometer with ‘Standard’ sensitivity at 200

nm/min scan speed and respond time of 2.0 s employing “slit” mode.

1.2. Computational methodology

B3LYP functional was used to optimize the geometrical structures of ground state (Sy).l1 A
“double-£” quality basis set consisting of Hay and Wadt’s effective core potentials (ECP),
LANL2DZ,l was employed to the Ir atom. 6-31G(d) basis setl3! was applied to other nonmetallic
atoms. The solvent effect in CH,Cl, medium was considered throughout the calculations. Combined
with VMD program,®] the molecular orbital was visualized by Multiwfn code.[*! The frontier
molecular orbital (FMO) distribution in molecules was analyzed by Multiwfn using Mulliken
population analysis. Gaussian 16 software package was used for calculations.[]
1.3. OLED fabrication

The OLEDs were grown on pre-patterned ITO coated glass (= 20 Q square™'). Before

depositing into the evaporation system, the ITO substrates were cleaned with acetone, ethyl alcohol,
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and deionized water by ultrasonic cleaning machine for 20 min. All the devices were deposited
sequentially under fine vacuum of 8 x 1075 Pa. The organic transport materials were grown by the
rate of 0.08-0.15 nm s~!, while organic dopants, LiQ were deposited at the rate of 0.02-0.15 A s71, Al
was deposited by the rate of 3 A s7!. The CIE coordinates, luminance, and EL spectra were carried
out by a PR655 spectra-scan photometer simultaneously. The current density-voltage characteristics
were tested by a programmable Keithley source-measure 2400 and PR655 spectra-scan.

ITO and Aluminum were used as the anode and cathode, respectively. 1, 4, 5, 8, 9, 11-
Hexaazatriphenylene-hexacarbonitrile (HAT-CN) and 8-hydroxyquinolinolato-lithium (LiQ) were
used as the hole-injection and electron-injection materials, respectively. Di-[4-(N, N-ditolyl-amino)-
phenyl] cyclohexane (TAPC) was used as the hole-transport material and N, N, N-tris(4-(9-
carbazolyl)phenyl)amine (TCTA) was used as the hole-transport/electron-blocking material. 1,3-
Bis(9H-carbazol-9-yl)benzene (mCP) was served as the host material. 1, 3, 5-Tri [(3-pyridyl)-phen-

3-yl]benzene (TmPyPB) was used as the electron-transport/hole-blocking material.
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Scheme S1 Synthetic routes of intermediates: i) Mg, THF, 40 °C, 1 h; ii) 3-Methylthiophene-2-
formaldehyde, THF, 1. t., 2 h; iii) Dess-Martin periodinane, CH,Cl,, 1. t., 12 h; iv) NBS, dibenzoyl
peroxide, CCly, reflux, 12 h; v) AgNOs, ethanol/H,0, reflux, 1 h; vi) Jones reagent, acetone, 0 °C, 2
h; vii) Hydrazine hydrate, ethanol, reflux, 12 h; viii) POCl;, CHCl;, reflux, 12 h.

2. Intermediate preparation

(3-Methylthiophen-2-y1)(3-(trifluoromethyl)phenyl)methanone (Z1): To a solution of Grignard
reagents (40 mmol) prepared from 3-3romotrifluoromethylbenzene and magnesium in dry THF (40
mL), the solution of 3-methylthiophene-2-formaldehyde (2.52 g, 20 mmol) in dry THF (20 mL) was
added at room temperature (r. t.), and the resulting mixture was stirred at this temperature for 2 h.
The reaction was quenched by the addition of sat. NH4Cl1 (10 mL). The mixture was extracted with
EtOAc (3 x 40 mL). The combined organic extracts were dried with Na,SO, and concentrated in
vacuo. The alcohol intermediate crude product was dissolved in CH,Cl, (30 mL) and Dess-Martin

periodinane (12.72 g, 30 mmol) was added, then the mixture was stirred at r. t. for 12 h. The
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reaction was quenched by the addition of aq. NaOH (0.1 mol/L) and was extracted with EtOAc (3 x
40 mL). The combined organic extracts were dried with Na,SO, and concentrated in vacuo. Flash
column chromatography using petroleum ether/ethyl acetate (V:V=8:1) as the eluent afforded Z1
(light yellow liquid, 52%). '"H NMR (400 MHz, CDCl;) 6 8.08 (s, 1H), 8.00 (d, /= 7.8 Hz, 1H), 7.82
(d, J=17.8 Hz, 1H), 7.61 (t, J=7.8 Hz, 1H), 7.54 (d, /= 4.9 Hz, 1H), 7.04 (d, /= 4.9 Hz, 1H), 2.51
(s, 3H). 'F NMR (376 MHz, CDCl3) & -62.56 (s, 3F). HRMS ((+)-ESI): m/z = 271.0401 (calcd.
271.0404 for [C3H;oF50S] [M+H]Y).

2-(3-(Trifluoromethyl)benzoyl)thiophene-3-carboxylic acid (Z2): A solution of Z1 (0.27 g, 1 mmol),
NBS (0.53g, 3 mmol) and dibenzoyl peroxide (0.048 g, 0.2 mmol) in CCly (30 mL) was reflux for 12
h under nitrogen. The precipitate was filtered and washed with dichloromethane, and the resulting
solution was washed with sat. NaHCO;. The combined organic extracts were dried with Na,SO, and
concentrated in vacuo. The dibromomethyl intermediate crude product was dissolved in ethanol (30
mL)/H,0 (3 mL) and AgNO; (0.51 g, 3 mmol) was added, then the mixture was reflux for 1 h. The
precipitate was filtered and washed with ethanol. The resulting solution is evaporated to near dryness,
and 50 mL H,O was added, then extracted with EtOAc (3 x 40 mL). The combined organic extracts
were dried with Na,SO, and concentrated in vacuo. The aldehyde ketone intermediate crude product
was dissolved in acetone (30 mL) and Jones reagent (2 mL, 2 M) was added in an ice water bath and
the mixture was stirred at this temperature for 2 h. The reaction was quenched by the addition of
methanol and was extracted with EtOAc (3 x 40 mL). The combined organic extracts were dried
with Na,SO4 and concentrated in vacuo. Flash column chromatography using CH,Cl,/methanol
(V:V=20:1) as the eluent afforded Z2 (white solid, 56%). '"H NMR (400 MHz, CDCl3) 3 8.10 (s, 1H),
8.00 (d,J=7.8 Hz, 1H), 7.88 (d, /= 7.8 Hz, 1H), 7.77 (d, /= 5.1 Hz, 1H), 7.66 (d, /= 5.2 Hz, 1H),
7.64 (t, J = 7.6 Hz, 1H). 'F NMR (376 MHz, CDCl;) 8 -62.88 (s, 3F). HRMS ((+)-ESI): m/z =
301.0150 (caled. 301.0146 for [C13HgF;05S] [M+H]).
7-(3-(Trifluoromethyl)phenyl)thieno[2,3-d|pyridazin-4(5H)-one (Z3): A solution of Z2 (0.30 g, 1
mmol) and NH,NH,-H,0 (0.50 g, 10 mmol) in ethanol (15 mL) was reflux for 12 h under nitrogen.
The precipitate of product S3 was filtered and washed with ethanol, then dried in an oven (yellow
solid, 82%). '"H NMR (400 MHz, DMSO-d6) & 13.20 (s, 1H), 8.18 (d, J = 5.2 Hz, 2H), 8.14 (s, 1H),

7.93 (d, J = 8.0 Hz, 1H), 7.84 (t, J = 8.0 Hz, 1H), 7.75 (d, J = 5.2 Hz, 1H). '°F NMR (376 MHz,
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CDCl3) 6 -61.31 (s, 3F). HRMS ((+)-ESI): m/z = 297.0303 (calcd. 297.0309 for [Ci3HgF;N,0S]
[M+H]".

4-Chloro-7-(3-(trifluoromethyl)phenyl)thieno[2,3-d]pyridazine (Clptp): A solution of Z3 (0.59 g, 2
mmol) and POCl; (3.06 g, 20 mmol) in CHCI; (20 mL) was reflux for 12 h under nitrogen. The
reaction was quenched by the addition of aqueous ammonia and was extracted with CH,Cl, (3 x 40
mL). The combined organic extracts were dried with Na,SO, and concentrated in vacuo. Flash
column chromatography using CH,Cl, as the eluent afforded ZClI (white solid, 91%). '"H NMR (400
MHz, CDCl;) 6 8.39 (s, 1H), 8.30 (d, /= 7.7 Hz, 1H), 8.01 (d, /= 5.4 Hz, 1H), 7.84 (d, J= 7.7 Hz,

1H), 7.74 (t, J= 7.6 Hz, 1H), 7.72 (d, J= 5.2 Hz, 1H). "9F NMR (376 MHz, CDCl;) & -62.72 (s, 3F).

3. Supplementary data on photophysical properties
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Fig. S1 The PL spectra (a) and emission decay curves (b) of as-prepared complexes in PMMA films at a

conc. of 1 wt% at RT.

4. TH- and YF-NMR spectra of all new compounds

TH-NMR Spectrum of Z1 in CDCl; (400 MHz):
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TH-NMR Spectrum of Z2 in CDCl; (400 MHz):
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TH-NMR Spectrum of Z3 in CDCl; (400 MHz):
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'TH-NMR Spectrum of Clptp in CDCI; (400 MHz):
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IYF-NMR Spectrum of Clptp in CDCl; (376 MHz):
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'TH-NMR Spectrum of ptpH in CDCl; (400 MHz):
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10



<
3 [ ©
ig.m “
9 L =

1 o

w\m._ o 1669

'F —
01 [

655  -66.5  -67.5 685 695  -70.5
d(ppm)
11

-64.5

-63.5

<
- [ N
, ol
[ N
=i
<
[ on
n "
[ on
—_
S g
[ <+ &
a .
R N
ro< an
=
< Ne)
L F\J. ~
on
N
N =<9
L -\J. C
Q
=) @)
| e R
| " Ra L8°79-
——H0T [ © = (879
o o 18°79-
=7 < g 5879
| g 5979
| ¥ 3 L9°79-
o~ = ST
M?.N o " 0Ty
N [ S 79"
H\@.@ N 21729
wv ]
L Om.w QFT

-62.5

-61.5
5. High resolution mass spectrometers (HRMS) of all new compounds



HRMS Spectrum of Z1:
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