Electronic supplementary information

Highly Efficient and Ultra-Stable CsPbBr³ Composites for LCD

Device and X-ray Imaging

Peng Wang, \ddagger abc Zhaoyu Wang, \ddagger d Meiyi Zhu, \ddagger abc QiuTing Cai, abc Hanyan Huang, ^{abc} Chengyuan Tang, ^{abc} Haoran Zhang, ^{abc} Chao Fan, *^{abce} Xingliang Dai, ^{abce} Haiping He*abce and Zhizhen Ye*abce

- *^a School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China.*
- *^b Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Zhejiang Provincial Engineering Research Center of Oxide Semiconductors for Environmental and Optoelectronic Applications, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, P. R. China.*
- *^c Wenzhou XINXINTAIJING Tech. Co. Ltd., Wenzhou, 325006, P. R. China.*
- *^d State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian 350002 P. R. China.*
- *^e Shanxi‐Zheda Institute of Advanced Materials and Chemical Engineering, Shanxi, 030000 P. R. China.*

**Corresponding Author: chaofan@hnu.edu.cn; hphe@zju.edu.cn; yezz@zju.edu.cn*

‡ These authors contributed equally to this work.

Fig. S1 a) BET result of MS templates and CsPbBr₃-DPSI/MS composites. b) TEM image of the original MS templates, showing the mesoporous structure. c) TEM image of CsPbBr₃-DPSI/MS composites.

Fig. S2 The N1s XPS spectra of CsPbBr₃/MS and CsPbBr₃-DPSI/MS.

Fig.S3 The PLQY of obtained samples as a function of the DPSI additive amount in precursors

Fig. S4 Relative PL intensity curve of CsPbBr₃-DPSI/MS composites in water for 250 hours.

Fig.S5 PL spectra of CsPbBr₃-DPSI/MS composites in a) 1 mol/L KI, b) 1 mol/L KCl, and c) 1 mol/L HCl aqueous solutions for 0 and 72 h. 450 nm laser is used as the excitation light source.

Fig. S6 PL spectrum of purple LED chips in the LCD device

Fig. S7 The transmittance spectrum of three primary colors in the LCD module

Fig. S8 Calculated attenuation spectra of CsPbBr₃, Bi₄Ge₃O_{12,} and CsI as a function of X-ray photon energy.

Fig. S9 RL intensity for the CsPbBr₃-DPSI/MS as a function of X-ray dose rate.

Table S1 The parameters of carrier lifetime by fitting the TRPL spectroscopy based on CsPbBr3/MS and CsPbBr3-DPSI/MS composites.

The TRPL decay curves are fitted by a biexponential equation:

$$
I(t) = I_0 + a_1 \exp\left(-t/\tau_1\right) + a_2 \exp_{\infty}[\sigma(t/\tau_2)] \tag{S1}
$$

where a_1 and a_2 are amplitudes; τ_1 and τ_2 are lifetimes for fast and long PL decay processes.

 A_1 and A_2 are relative amplitudes, which can be calculated using the following formula:

$$
A_i = \frac{a_i \tau_i}{\sum_{n=1}^{2} a_n \tau_n}
$$
 (S2)

 τ_{average} is the average lifetime, which can be calculated using the following formula:

$$
\tau_{average} = \tau_1 A_1 + \tau_2 A_2 \tag{S3}
$$

Table S2 FWHM comparisons of typical fluorescence materials.

Table S3 Stability and PLQY of the typical CsPbBr³ QDs reported to date.

		CIE x	CIE y
CPB-LCD	$\mathbf R$	0.684	0.305
	G	0.142	0.728
	B	0.152	0.068
OC-LCD	\mathbb{R}	0.681	0.310
	G	0.235	0.692
	B	0.155	0.068

Table S4 The three primary color coordinates of CPB-LCD and OC-LCD

Table S5 Spatial resolutions of X-ray imaging for the CsPbBr₃-DPSI/MS compositesbased scintillator and other typical perovskite scintillators.

Ref.

1. B. Li, Y. Zhang, Y. Xu and Z. Xia, Journal of Materials Chemistry C, 2021, 9, 12118- 12123.

2. S. Chen, J. Lin, J. Huang, T. Pang, Q. Ye, Y. Zheng, X. Li, Y. Yu, B. Zhuang and D. Chen, Advanced Functional Materials, 2023, 34.

3. Q. Huang, W. Chen, X. Liang, C. Lv and W. Xiang, ACS Sustainable Chemistry & Engineering, 2023, 11, 9773-9781.

4. Q. Wang, M. Jin, Y. Chen, Y. Zhao, Y. Tong, Z. He, X. Liang and W. Xiang, Adv. Opt. Mater., 2021, 9.

5. Z. Wang, Z. Wei, Y. Cai, L. Wang, M. Li, P. Liu, R. Xie, L. Wang, G. Wei and H. Y. Fu, ACS Appl Mater Interfaces, 2021, 13, 54143-54151.

6. C. Kang, M. F. Prodanov, Y. Gao, K. Mallem, Z. Yuan, V. V. Vashchenko and A. K. Srivastava, Adv Mater, 2021, 33, e2104685.

7. Y. Kim, S. Ham, H. Jang, J. H. Min, H. Chung, J. Lee, D. Kim and E. Jang, ACS Appl. Nano Mater., 2019, 2, 1496-1504.

8. B. Su, M. S. Molokeev and Z. Xia, Journal of Materials Chemistry C, 2019, 7, 11220- 11226.

9. Q. Kong, B. Yang, J. Chen, R. Zhang, S. Liu, D. Zheng, H. Zhang, Q. Liu, Y. Wang and K. Han, Angew Chem Int Ed Engl, 2021, 60, 19653-19659.

10. Y. Tao, H. Zhao, Y. Xu, D. Wang and Y. Wang, Inorg Chem, 2022, 61, 8782-8787.

11. Q. Kong, X. Meng, S. Ji, Q. Wang, B. Yang, T. Bai, X. Wang, Z. Wang, R. Zhang, D. Zheng, F. Liu and K.-l. Han, ACS Materials Letters, 2022, 4, 1734-1741.

12. X. Hao, H. Liu, W. Ding, F. Zhang, X. Li and S. Wang, J Phys Chem Lett, 2022, 13, 4688-4694.

13. J. Qiao, Y. Zhou, M. S. Molokeev, Q. Zhang and Z. Xia, Laser & Photonics Reviews, 2021, 15.

14. Y. Zhuo, S. Hariyani, J. Zhong and J. Brgoch, Chemistry of Materials, 2021, 33, 3304- 3311.

15. S. Wang, X. Liu, B. Qu, Z. Song, Z. Wang, S. Zhang, F. Wang, W.-T. Geng and Q. Liu, Journal of Materials Chemistry C, 2019, 7, 12544-12551.

16. E. H. Song, Y. Y. Zhou, Y. Wei, X. X. Han, Z. R. Tao, R. L. Qiu, Z. G. Xia and Q. Y. Zhang, Journal of Materials Chemistry C, 2019, 7, 8192-8198.

17 T. Xuan, S. Guo, W. Bai, T. Zhou, L. Wang and R.-J. Xie, Nano Energy, 2022, 95, 107003.

18 Y. Zhang, L. Han, B. Li and Y. Xu, Chem. Eng. J., 2022, 437, 135290.

19 Z. Yang, H. Zhang, Z. Fang, J. Yi, P. Song, X. Yu, D. Zhou, J. Qiu and X. Xu, Chem. Eng. J., 2022, 427, 131379.

20 Q. Li, D. Shen, C. Luo, Z. Zheng, W. Xia, W. Ma, J. Li, Y. Yang, S. Chen and Y. Chen, Small, 2022, 18, 2107452.

21 Q. Zhang, B. Wang, W. Zheng, L. Kong, Q. Wan, C. Zhang, Z. Li, X. Cao, M. Liu and L. Li, Nat. Commun., 2020, 11, 31.

22 S. Song, Y. Lv, B. Cao and W. Wang, Adv. Funct. Mater., 2023, 33, 2300493.

23 W. Chen, M. Zhou, Y. Liu, X. Yu, C. Pi, Z. Yang, H. Zhang, Z. Liu, T. Wang, J. Qiu, S. F. Yu, Y. Yang and X. Xu, Adv. Funct. Mater., 2021, 32, 2107424.

24 B. Wang, J. Peng, X. Yang, W. Cai, H. Xiao, S. Zhao, Q. Lin and Z. Zang, Laser Photonics

Rev., 2022, 16, 2100736.

25 W. Ma, T. Jiang, Z. Yang, H. Zhang, Y. Su, Z. Chen, X. Chen, Y. Ma, W. Zhu, X. Yu, H. Zhu, J. Qiu, X. Liu, X. Xu and Y. M. Yang, Adv. Sci., 2021, 8, 2003728.

26 S. Cho, S. Kim, J. Kim, Y. Jo, I. Ryu, S. Hong, J. J. Lee, S. Cha, E. B. Nam, S. U. Lee, S. K. Noh, H. Kim, J. Kwak and H. Im, Light Sci. Appl., 2020, 9, 156.

27 B. Yang, W. Pan, H. Wu, G. Niu, J. H. Yuan, K. H. Xue, L. Yin, X. Du, X. S. Miao, X. Yang, Q. Xie and J. Tang, Nat. Commun., 2019, 10, 1989.

28 W. Zhou, X. Zhu, J. Yu, D. Mou, H. Li, L. Kong, T. Lang, L. Peng, W. Chen, X. Xu and B. Liu, ACS Appl. Mater. Interfaces, 2023, 15, 38741-38749.

29 Q. Xu, S. Zhou, J. Huang, X. Ouyang, J. Liu, Y. Guo, J. Wang, J. Nie, X. Zhang, X. Ouyang and W. Jia, Mater. Today Phys., 2021, 18, 100390.