Supporting information

NIR-II Emissive Donor-Acceptor-Donor Fluorophores for Dual Fluorescence Bioimaging and Photothermal Therapy Applications

Nicholas E. Sparks, ${ }^{a}$ Cameron Smith, ${ }^{\text {c }}$ Terrence Stahl, ${ }^{a}$ Dhanush L. Amarasekara, ${ }^{\text {d }}$ Christine Hamadani, ${ }^{\text {c }}$ Ethan Lambert, ${ }^{\text {c }}$ Sheng Wei Tang, ${ }^{a}$ Anuja Kulkarni, ${ }^{\text {a }}$ Blaine M. Derbigny, ${ }^{\text {a }}$ Gaya Dasanayake, ${ }^{c}$ George Taylor, ${ }^{c}$ Maryam
a. Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
b. William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W Woodruff Ave., Columbus, OH 43210, USA
c. Department of Chemistry and Biochemistry, University of Mississippi University, Oxford, MS, United States
d. Department of Chemistry, Mississippi State University, Mississippi State, MS 39762.

Corresponding author: watkins.891@osu.edu
Contents
General Summary:.. 2
Synthesis:... 3
Photophysical Characterization: .. 16
Nanoparticle Morphology:... 20
Photothermal Efficiency:.. 25
Computational Assessment: .. 29
References:... 42

General Summary:

All materials and reagents were purchased from commercial sources and were used without further modification unless noted otherwise. Anhydrous solvents were obtained from a Glass Contour solvent purification system (Irvine, CA, USA). Thin-layer chromatography (TLC) was performed using SiO ${ }_{2}$-60 F254 aluminum-backed plates with visualization by ultraviolet (UV) light while flash column chromatography was performed using a Purasil $\mathrm{SiO}_{2}-60,230-400$ mesh from Whatman. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were recorded using a Bruker Avance 400 MHz spectrometer and were recorded using solvent as an internal standard (CDCl_{3} at 7.26 ppm). Mass spectrometry of the target compounds ($0.1 \mathrm{mg} / \mathrm{mL}$) was performed on a Bruker (Milton, ON, Canada) Elute SP HPLC with Bruker Impact II QqTOF Mass Spectrometer under electrospray ionization (ESI) conditions. Electron paramagnetic resonance (EPR) spectroscopy was performed with a Bruker (Milton, ON, Canada) Magnettech ESR5000 spectrometer with 1 mM solution (CDCl_{3}) of fluorophore. Quantification of spin states was calculated using $\mathrm{Cu}(\mathrm{II})(\mathrm{OTf})_{2}$ as a reference in 1 mM THF.

Absorption and emission calculations were performed for DMA-TTDT ${ }_{2}$, Morp-TTDT ${ }_{2}$, and Pip-TTDT ${ }_{2}$ fluorophores, where hexyl groups on the thiophene spacers were replaced with methyl groups. The S_{0} and S_{1} geometries of the compounds were optimized using the CAM-B3LYP density functional with the ccpVDZ basis set. ${ }^{1-3}$ The calculations were carried out using an unrestricted reference wavefunction. The stability of reference wavefunction was checked using a stability analysis. Time-dependent density functional theory (TDDFT) was used to perform all excited state calculations. ${ }^{4}$ The TDDFT calculations employed the CAM-B3LYP functional, and a modified basis set where all heteroatoms had additional diffuse basis functions (aug-cc-pvdz). ${ }^{2,3,5}$ In addition, the solvent effects were described using a polarizable continuum model (PCM) with chloroform as a solvent. ${ }^{6}$ For each electronic transition in TDDFT, we calculated natural transition orbitals (NTOs), which were used to quantify the orbital contributions from the amine donor and thiophene spacers. ${ }^{7}$ Finally, natural bond orbital calculations were performed to obtain the atomic charge for all nitrogen atoms. ${ }^{8}$ All calculations utilized the Ohio Supercomputer Center and the Q-chem quantum chemistry package. ${ }^{9,10}$

Absorption measurements were carried out on a Varian Cary-500 spectrometer (Dorval, OC, Canada) in CHCl_{3}. A 1 kHz regeneratively amplified Ti:Sapphire laser (Coherent Astrella, Santa Clara, California) with a $7 \mathrm{~W}, 100$ fs output pulse centered at 800 nm output is split with an $85-15$ beam splitter to generate pump and probe beams. To generate the pump, the reflected portion of the 800 nm output is directed into a commercial optical parametric amplifier (OPerA Solo, Vilnius, Lithuania), producing a 650 nm pump beam. Both the output of the OPerA Solo as well as the remainder of the originally transmitted 800 nm light are directed into a commercial transient absorption spectrometer (Ultrafast Systems Helios, Sarasota, Florida). The pump beam is chopped at 500 Hz before being depolarized and focused with a 350 mm focal length lens to the sample position. The remaining 800 nm light is first passed onto a mechanical delay stage before being focused onto a translating CaF_{2} crystal to generate a visible white light continuum from 425 to 850 nm . The white light is then filtered to remove any remaining fundamental light and split into the probe and reference beams. The reference beam is then reflected into a separate camera to account for jitter and intensity fluctuations. Ultrafast data ($\Delta \mathrm{OD}(\lambda, \mathrm{t})$) for each sample were collected by
averaging 3 scans with 2 s of averaging at each time delay and corrected with a polynomial to account for the temporal chirp. Samples were held in 2 mm quarts cuvettes (FireflySci, Inc., Staten Island, New York).

Dynamic light scattering (DLS) and transmission electron microscopy (TEM) were used to characterize the morphological properties of the encapsulated fluorophores. Particle size and polydispersity index (PDI) were measured utilizing a Malvern Instrument Zetasizer Nano ZS using a 633 nm wavelength He-Ne laser with a detector angle of 173° at $25^{\circ} \mathrm{C}$. For DLS, the samples were used without any treatment or dilution.

Synthesis:

$\mathrm{Hex=}$

Scheme 1: i) 2-(3-hexylthiophen-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, Pd^{0} tetrakis, aq. $\mathrm{K}_{2} \mathrm{CO}_{3}$, Tol:EtOH, $100^{\circ} \mathrm{C}$ for 24 hours; ii) $\mathrm{SnCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}, \mathrm{DCM}: \mathrm{EtOH}$, conc. $\mathrm{HCl}, 25^{\circ} \mathrm{C}$ for 3 days; iii) TMSCl , thionylaniline, Pyridine, $25^{\circ} \mathrm{C}$ for 18 hours; iv) NBS, DMF, $0^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$ for 18 hours

Scheme 2: v) 4-bromoaniline, $\mathrm{SDS}, \mathrm{NaHCO}_{3}, 1,5$-dibromopentane, $\mathrm{H}_{2} \mathrm{O}, 80^{\circ} \mathrm{C}$ for 18 hours; vi) n-BuLi, tri-n-butyltin chloride, THF, $-78^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$ for 4 hours

Scheme 3: vii) $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$, Toluene, $110^{\circ} \mathrm{C}, 24$ hours

Synthesis of 3,3"-dihexyl-3',4'-dinitro-2,2':5',2"-terthiophene (1) ${ }^{11}: 2,5$-dibromo-3,4-dinitrothiophene $(1.54 \mathrm{mmol} / 511 \mathrm{mg})$ and Pd^{0} tetrakis ($0.154 \mathrm{mmol} / 176 \mathrm{mg}$) were added to a two-neck 50 mL RBF. The RBF was evacuated and refilled with N_{2} for three cycles. The solids were dissolved in a 1:1 mixture of Toluene:EtOH (10 mL each). 2-(3-hexylthiophen-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3.38 $\mathrm{mmol} / 1.01 \mathrm{~mL}$) was then added to the RBF. $\mathrm{K}_{2} \mathrm{CO}_{3}(6.16 \mathrm{mmol} / 851 \mathrm{mg})$ was dissolved in 2 mL of $\mathrm{H}_{2} \mathrm{O}$ and was then added to the RBF. The reaction mixture was allowed to stir at $100^{\circ} \mathrm{C}$ for 24 hours. The crude product was washed with $\mathrm{H}_{2} \mathrm{O}$ and extracted with DCM and dried with MgSO_{4}. The product was purified via column chromatography using 4:1 Hexanes:DCM as the eluent to afford 575 mg (73% yield) of product as a yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.50(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz} 4 \mathrm{H})$, 1.66-1.53 ($\mathrm{m}, 4 \mathrm{H}$), 1.33-1.21 ($\mathrm{m}, 12 \mathrm{H}$), $0.87(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz} 6 \mathrm{H}$).

Synthesis of 3,3'-dihexyl-[2,2':5',2"-terthiophene]-3',4'-diamine (2) ${ }^{11}: \quad 3,3$ "-dihexyl-3',4'-dinitro2, $2^{\prime}: 5^{\prime}, 2^{\prime \prime}$-terthiophene ($1.13 \mathrm{mmol} / 575 \mathrm{mg}$) was added to a 100 mL RBF. The RBF was evacuated and refilled with N_{2} for three cycles after which 7 mL of $\mathrm{DCM}(0.16 \mathrm{M})$ and 7 mL of $\mathrm{EtOH}(0.16 \mathrm{M})$ was added. $\mathrm{SnCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(11.3 \mathrm{mmol} / 2.54 \mathrm{~g})$ was added to a separate RBF which was also evacuated and refilled with N_{2} for three cycles and was then dissolved with 11.3 mL of $\mathrm{EtOH}(1 \mathrm{M})$ and 8.4 mL of conc. $\mathrm{HCl}(1.35 \mathrm{M})$. The $\mathrm{SnCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ solution was then added to the RBF containing the 3,3"-dihexyl-3',4'-dinitro-2, 2':5', $2^{\prime \prime}$ terthiophene and was allowed to stir at $25^{\circ} \mathrm{C}$ for three days. The product was obtained by washing with 1 M NaOH and extracted with DCM before being dried with MgSO_{4}. The product was obtained in quantitative yields and was used without further purification.

Synthesis of TTD-HexT2 (3) ${ }^{11}: 3,3$ "-dihexyl-[2,2':5',2"-terthiophene]-3',4'-diamine ($1.47 \mathrm{mmol} / 700 \mathrm{mg}$) was added to a 100 mL RBF. The RBF was evacuated and refilled with N_{2} for three cycles. The diamine was then dissolved with 8 mL of pyridine (0.2 M) and allowed to stir. TMSCI ($10.3 \mathrm{mmol} / 1.3 \mathrm{~mL}$) was added dropwise to the RBF followed by thionylaniline ($2.94 \mathrm{mmol} / 0.33 \mathrm{~mL}$). The reaction mixture immediately turns dark blue and is allowed to stir at $25^{\circ} \mathrm{C}$ for 18 hours. The crude product is washed with 1 M HCl and extracted with DCM before being dried with MgSO_{4}. The product was purified with column chromatograph using 1:1 Hexanes/DCM as the eluent to give 350 mg (49% yield) of product as a blue solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.35(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz} 4 \mathrm{H})$, 1.77-1.69 (m, 4H), 1.34-1.30 (m, 12H), 0.93-0.89 (m, 6H).

Synthesis of TTD-HexT $\mathbf{T}_{2}-\mathrm{Br}_{2}$ (4): TTD-HexT ${ }_{2}(0.36 \mathrm{mmol} / 170 \mathrm{mg}$) was added to a 50 mL RBF and was evacuated and refilled with N_{2} for three cycles. 12 mL of DMF (0.03 M) was added and the solution was allowed to cool to $0^{\circ} \mathrm{C}$. NBS ($0.79 \mathrm{mmol} / 140 \mathrm{mg}$) was added to a separate RBF which was evacuated and refilled with N_{2} also. The NBS was dissolved with 8 mL of DMF (0.1 M) and was then added to the RBF with TTD-HexT T_{2}. The reaction mixture was allowed to warm up to $25^{\circ} \mathrm{C}$ and stir for 18 hours. The crude product was washed with $\mathrm{H}_{2} \mathrm{O}$ and extracted with DCM before being dried with MgSO_{4}. The product was purified with column chromatography using 9:1 Hexanes:DCM as the eluent to give 60 mg (27% yield) as a blue solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 6.95(\mathrm{~s}, 2 \mathrm{H}), 2.84(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz} 4 \mathrm{H}), 1.74-1.65(\mathrm{~m}, 4 \mathrm{H})$, 1.34-1.29 (m, 12H), 0.91-0.82 (m, 6H).

Synthesis of 1-(4-bromophenyl)piperidine (5): 4-bromoaniline ($5.8 \mathrm{mmol} / 1 \mathrm{~g}$), sodium dodecyl sulfate (SDS, 58 mg), and $\mathrm{NaHCO}_{3}(13.9 \mathrm{mmol} / 1.16 \mathrm{~g})$ were added to a 100 mL RBF. The RBF was evacuated and refilled with N_{2} for three cycles. 58 mL of $\mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{M})$ were added to the RBF which was allowed to heat at $80^{\circ} \mathrm{C}$ for 5 minutes. After 5 minutes, 1,5-dibromopentane ($6.9 \mathrm{mmol} / 0.94 \mathrm{~mL}$) was added and the reaction mixture was allowed to stir at $80^{\circ} \mathrm{C}$ for 18 hours. The reaction mixture was allowed to cool to room temperature and the crude product was extracted with EtOAc and dried with MgSO_{4}. The product was purified with column chromatography using 100\% Hexanes as the eluent to afford 914 mg (66% yield) of product as a white crystalline solid.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.31(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.13-3.10(\mathrm{~m}, 4 \mathrm{H}), 1.72-$ $1.66(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.55(\mathrm{~m}, 2 \mathrm{H})$.

Synthesis of N,N-dimethyl-4-(tributylstannyl)aniline (6): N,N-dimethyl-4-bromoaniline ($0.49 \mathrm{mmol} / 100$ mg) was added to a 50 mL RBF which was evacuated and refilled with N_{2} for three cycles. 3 mL of THF (0.2 M) was added to the RBF and was allowed to cool to $-78^{\circ} \mathrm{C}$. n -BuLi $(0.59 \mathrm{mmol} / 0.24 \mathrm{~mL})$ was then added dropwise and the reaction mixture was allowed to stir at $-78^{\circ} \mathrm{C}$ for 30 minutes. Tri-n-butyltin chloride ($0.54 \mathrm{mmol} / 0.15 \mathrm{~mL}$) was added and the reaction mixture was allowed to warm to $25^{\circ} \mathrm{C}$ and stir for 4 hours. The product washed with cold $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$ and dried with MgSO_{4}. The product was obtained as a viscous oil confirmed by TLC (100\% Hexanes) and was used without further purification.

Synthesis of 1-(4-(tributylstannyl)phenyl)piperidine (7): 1-(4-bromophenyl)piperidine ($0.46 \mathrm{mmol} / 110$ mg) was added to a 50 mL RBF which was evacuated and refilled with N_{2} for three cycles. 3 mL of THF (0.2 M) was added to the RBF and was allowed to cool to $-78^{\circ} \mathrm{C}$. n -BuLi $(0.55 \mathrm{mmol} / 0.22 \mathrm{~mL})$ was then added dropwise and the reaction mixture was allowed to stir at $-78^{\circ} \mathrm{C}$ for 30 minutes. Tri-n-butyltin chloride ($0.51 \mathrm{mmol} / 0.14 \mathrm{~mL}$) was added and the reaction mixture was allowed to warm to $25^{\circ} \mathrm{C}$ and stir for 4 hours. The product washed with cold $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$ and dried with MgSO_{4}. The product was obtained as a viscous oil confirmed by TLC (100\% Hexanes) and was used without further purification.

Synthesis of 4-(4-(tributylstannyl)phenyl)morpholine (8): 4-(4-bromophenyl)morpholine ($0.41 \mathrm{mmol} / 100$ mg) was added to a 50 mL RBF which was evacuated and refilled with N_{2} for three cycles. 2 mL of THF (0.2 M) was added to the RBF and was allowed to cool to $-78^{\circ} \mathrm{C}$. n -BuLi $(0.50 \mathrm{mmol} / 0.20 \mathrm{~mL})$ was then added dropwise and the reaction mixture was allowed to stir at $-78^{\circ} \mathrm{C}$ for 30 minutes. Tri-n-butyltin chloride ($0.45 \mathrm{mmol} / 0.12 \mathrm{~mL}$) was added and the reaction mixture was allowed to warm to $25^{\circ} \mathrm{C}$ and stir for 4 hours. The product washed with cold $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$ and dried with MgSO_{4}. The product was obtained as a viscous oil confirmed by TLC (100\% Hexanes) and was used without further purification.

Synthesis of DMA-TTDT ${ }_{2}$: TTD-HexT $2-\mathrm{Br}_{2}(0.1 \mathrm{mmol} / 60 \mathrm{mg})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.01 \mathrm{mmol} / 10 \mathrm{mg})$ were added to a two-neck 50 mL RBF with a condenser which was evacuated and refilled with N_{2} for three cycles. 8 mL of Toluene (0.0125 M) was added followed by N,N-dimethyl-4-(tributylstannyl)aniline (0.22 $\mathrm{mmol} / 90 \mathrm{mg}$) and the reaction mixture was heated to $110^{\circ} \mathrm{C}$ and allowed to stir for 24 hours. Toluene was removed and the crude product was precipitated out with Hexanes and collected with vacuum filtration. The product was further purified with column chromatography using 100% DCM as the eluent to give 26 mg (37% yield) of product as a dark green solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.57(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.08(\mathrm{~s}, 2 \mathrm{H}), 6.74(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 3.01(\mathrm{~s}$, $12 \mathrm{H}), 2.94-2.91(\mathrm{~m}, 4 \mathrm{H}), 1.83-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.52-1.47(\mathrm{~m}, 4 \mathrm{H}), 1.38-1.34(\mathrm{~m}, 8 \mathrm{H}), 0.92-0.89(\mathrm{brt}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta(\mathrm{ppm}): 156.59,150.25,145.01,140.80,127.15,126.72,124.22,122.50$, $112.57,112.43,40.59,31.96,30.92,30.03,29.69,22.84,14.29$.

HRMS (ESI) calcd. For $[\mathrm{M}+\mathrm{H}]+\mathrm{m} / \mathrm{z}: \mathrm{C}_{40} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{~S}_{4}$: 712.2762; Found: 712.2760

Synthesis of Pip-TTDT 2 : TTD- $\mathrm{HexT}_{2}-\mathrm{Br}_{2}(0.1 \mathrm{mmol} / 60 \mathrm{mg})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.01 \mathrm{mmol} / 10 \mathrm{mg})$ were added to a two-neck 50 mL RBF with a condenser which was evacuated and refilled with N_{2} for three cycles. 10 mL of Toluene (0.01 M) was added followed by 1-(4-(tributylstannyl)phenyl)piperidine ($0.22 \mathrm{mmol} / 99 \mathrm{mg}$) and the reaction mixture was heated to $110^{\circ} \mathrm{C}$ and allowed to stir for 24 hours. Toluene was removed and the crude product was precipitated out with Hexanes and collected with vacuum filtration. The product was further purified with column chromatography using $100 \% \mathrm{DCM}$ as the eluent to give 30 mg (38% yield) of product as a dark green solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.55(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.10(\mathrm{~s}, 2 \mathrm{H}), 6.94(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 4 \mathrm{H}), 3.23(\mathrm{t}, \mathrm{J}=$ $6.1 \mathrm{~Hz}, 8 \mathrm{H}), 2.93(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.82-1.76(\mathrm{~m}, 4 \mathrm{H}), 1.75-1.69(\mathrm{~m} 8 \mathrm{H}), 1.63-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.54-1.47(\mathrm{~m}$, $4 \mathrm{H}), 1.38-1.34(\mathrm{~m}, 8 \mathrm{H}), 0.91(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta(\mathrm{ppm}): 156.49,151.56,144.53,140.69,127.40,126.44,124.58,124.50$, $116.03,112.36,50.05,31.81,30.76,29.88,29.54,25.70,24.32,22.69,14.14$.

HRMS (ESI) calcd. For $[\mathrm{M}+\mathrm{H}]+\mathrm{m} / \mathrm{z}: \mathrm{C}_{46} \mathrm{H}_{56} \mathrm{~N}_{4} \mathrm{~S}_{4}$: 792.3388; Found: 793.3450

Synthesis of Morp-TTDT ${ }_{2}$: TTD- $\mathrm{HexT}_{2}-\mathrm{Br}_{2}(0.08 \mathrm{mmol} / 50 \mathrm{mg})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.008 \mathrm{mmol} / 5.6 \mathrm{mg})$ were added to a two-neck 50 mL RBF with a condenser which was evacuated and refilled with N_{2} for three cycles. 8 mL of Toluene (0.01 M) was added followed by 4-(4-(tributylstannyl)phenyl)morpholine (0.17 $\mathrm{mmol} / 80 \mathrm{mg}$) and the reaction mixture was heated to $110^{\circ} \mathrm{C}$ and allowed to stir for 24 hours. Toluene was removed and the crude product was precipitated out with Hexanes and collected with vacuum filtration. The product was further purified with column chromatography using 100% DCM as the eluent to give 19.7 mg (31% yield) of product as a dark green solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.58(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.13(\mathrm{~s}, 2 \mathrm{H}), 6.93(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.88(\mathrm{t}, \mathrm{J}=$ $4.8 \mathrm{~Hz}, 8 \mathrm{H}), 3.22(\mathrm{t}, \mathrm{J}=4.9 \mathrm{~Hz}, 8 \mathrm{H}), 2.93(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.83-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.46(\mathrm{~m}, 4 \mathrm{H}), 1.41-1.30$ $(\mathrm{m}, 8 \mathrm{H}), 0.91(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz} 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 156.67,150.90,144.29,140.89,127.86,126.68,125.76,125.05$, $115.66,112.56,66.97,49.02,31.95,30.90,30.02,29.68,22.83,14.28$.

HRMS (ESI) calcd. For [M+H]+m/z: $\mathrm{C}_{44} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{4}$: 796.2973; Found: 797.3049

Synthesis of PhPCL-PEG polymer: Monomethoxy PEG-4000 (dehydrated by refluxing in toluene and further dried under vacuum) ($1.00 \mathrm{~g}, 0.25 \mathrm{mmol}$), ε-caprolactone ($1.275 \mathrm{~g}, 0.25 \mathrm{mmol}$), phenyl caprolactone ($0.225 \mathrm{~g}, 0.25 \mathrm{mmol}$), 2-ethylhexanoate $\left(\mathrm{Sn}(\mathrm{Oct})_{2}\right)(190 \mathrm{mg}, 0.25 \mathrm{mmol})$ were added in a clean RBF maintained in the glove box under inert atmosphere. The overall hydrophilic and hydrophobic percentage was maintained at 40% and 60%, respectively. Anhydrous chlorobenzene (7.65 ml) and chloroform (1.5 ml) were added to the above mixture which was heated to $120^{\circ} \mathrm{C}$, and further stirred for 10 h . The reaction mixture was cooled down to room temperature, added dropwise into 10 ml of hexanes while stirring. A brownish yellow precipitate formed instantly. The mixture kept stirring for 30 more minutes, and stirring was stopped. The precipitate was allowed to settle, and hexanes was decanted from the mixture. The resulting brownish precipitate was redissolved in chloroform (5 ml) and added dropwise into 10 ml of hexanes, as mentioned in the previous step. To obtain a pure product the precipitation procedure was repeated three times. The resulting brownish yellow precipitate was dried under a high vacuum at $25^{\circ} \mathrm{C}$ for 24 hours to obtain the pure product with a 70% yield (1 g).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29,7.20,7.11,4.05,3.99,3.64,2.48,2.30,2.23,2.11,1.98,1.64,1.38$.
GPC polymer characterization: $M_{n}=12,718 \mathrm{Da}, \mathrm{M}_{\mathrm{w}}=14,763 \mathrm{Da}, \mathrm{M}_{\mathrm{z}}=17,044 \mathrm{Da}, \mathrm{M}_{\mathrm{p}}=13,346 \mathrm{Da}, \mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}$ $=1.16$

Figure S1: ${ }^{1} \mathrm{H}$ NMR of 3,3"-dihexyl-3',4'-dinitro-2,2':5',2'-terthiophene (1)

Figure S2: ${ }^{1} \mathrm{H}$ NMR of TTD-HexT $\mathbf{T}_{2}(3)$

Figure S3: ${ }^{1} \mathrm{H}$ NMR of TTD- $\mathrm{HexT}_{2}-\mathrm{Br}_{2}$ (4); impurities: vacuum grease, ethyl acetate

Figure S4: ${ }^{1} \mathrm{H}$ NMR of 1-(4-bromophenyl)piperidine (5)

Figure S5: ${ }^{1} \mathrm{H}$ NMR of $\mathrm{DMA}^{(T T D T} \mathbf{2}_{2}$ impurities: silicon oil

Figure S6: ${ }^{13}$ C NMR of DMA-TTDT ${ }_{2}$; impurities: silicon oil

Figure S7: ${ }^{1} \mathrm{H}$ NMR of Pip-TTDT ${ }_{2}$; impurities: silicon oil

Figure S8: ${ }^{13} \mathrm{C}$ NMR of Pip-TTDT ${ }_{2}$; impurities: silicon oil

Figure S9: ${ }^{1} \mathrm{H}$ NMR of Morp-TTDT ${ }_{2}$; impurities: silicon oil

Figure S10: ${ }^{13} \mathrm{C}$ NMR of Morp-TTDT ${ }_{2}$; impurities: silicon oil

Figure S11: ${ }^{1} \mathrm{H}$ NMR and structure PhPCL-PEG polymer; GPC polymer characterization: $\mathrm{M}_{\mathrm{n}}=12,718 \mathrm{Da}, \mathrm{M}_{\mathrm{w}}$ $=14,763 \mathrm{Da}, \mathrm{M}_{\mathrm{z}}=17,044 \mathrm{Da}, \mathrm{M}_{\mathrm{p}}=13,346 \mathrm{Da}, \mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}=1.16$

Photophysical Characterization:
Table S1: Absorbance values (in nm) of the TTDT derivatives from both pH studies. Acetone/ $\mathrm{H}_{2} \mathrm{O}$ study was performed at a ratio of 6 mL acetone to $1 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ at the appropriate pH . Nanoparticle study was performed with 1 mL of a $1 \mathrm{mg} / \mathrm{mL}$ nanoparticle solution and 1 mL of $\mathrm{H}_{2} \mathrm{O}$ at the appropriate pH .

	Acetone/ $\mathrm{H}_{2} \mathrm{O}$			Nanoparticle		
	pH 7	pH 5	pH 3	pH 7	pH 5	pH 3
DMA-TTDT $_{2}$	725	729	729	720	729	740
Pip-TTDT $_{2}$	716	714	698	734	721	728
Morp-TTDT $_{2}$	704	703	703	721	714	713

Figure S12: UV-Vis-NIR absorbance of DMA-TTDT \mathbf{T}_{2} in Acetone $/ \mathrm{H}_{2} \mathrm{O}$ in different pHs

Figure S13: UV-Vis-NIR absorbance of Morp-TTDT I $_{2}$ in Acetone/ $\mathrm{H}_{2} \mathrm{O}$ in different pHs

Figure S14: UV-Vis-NIR absorbance of Pip-TTDT 2 in Acetone $/ \mathrm{H}_{2} \mathrm{O}$ in different pHs

Figure S15: UV-Vis-NIR absorbance of DMA-TTDT 2 nanoparticles in $\mathrm{H}_{2} \mathrm{O}$ at different pHs

Figure S16: UV-Vis-NIR absorbance of Morp-TTDT 2_{2} nanoparticles in $\mathrm{H}_{2} \mathrm{O}$ at different pHs

Figure S17: UV-Vis-NIR absorbance of Pip-TTDT $\mathbf{2}_{2}$ nanoparticles in $\mathrm{H}_{2} \mathrm{O}$ at different pHs

Figure S18: UV-Vis-NIR absorbance spectra of TTD-HexT 2 in Acetone $/ \mathrm{H}_{2} \mathrm{O}$ in different pHs

Figure S19: UV-Vis-NIR absorbance of TTD-HexT T_{2} nanoparticles in $\mathrm{H}_{2} \mathrm{O}$ at different pHs

Figure S20: Excited state lifetime curves of the TTDT $_{2}$ derivatives in CHCl_{3} (a) and encapsulated (b)

Figure S21: TAS spectra of DMA-TTDT $\mathbf{2}_{2}$ in CHCl_{3} (a) and encapsulated (b)

Figure S22: TAS spectra of Morp-TTDT 2 in $\mathrm{CHCl}_{3}(\mathrm{a})$ and encapsulated (b)

Figure S23: TAS spectra of Pip-TTDT ${ }_{2}$ in CHCl_{3} (a) and encapsulated (b)

Nanoparticle Morphology:

Figure S24: Image of DMA-TTDT $\mathbf{2}_{2}$ in water (left vial) and encapsulated in PhPCL-PEG polymer (right vial)

Table S2: Nanoparticle size data for the TTDT derivatives and the empty PhPCL-PEG polymer. For DLS, the measured standard deviations (\pm) are determined from the experiments being run in triplicate. For TEM, the standard deviations are calculated from the average measured size of each nanoparticle.

Figure S25: DLS spectra (intensity) of DMA-TTDT 2 nanoparticles

Figure S26: DLS spectra (number) of DMA-TTDT ${ }_{2}$ nanoparticles

Figure S27: DLS spectra (intensity) of Pip-TTDT 2 nanoparticles

Figure S28: DLS spectra (number) of Pip-TTDT 2 nanoparticles

Figure S29: DLS spectra (intensity) of Morp-TTDT 2 nanoparticles

Figure S30: DLS spectra (number) of Morp-TTDT ${ }_{2}$ nanoparticles

Figure S31: DLS spectra (intensity) of empty PhPCL-PEG nanoparticles

Figure S32: DLS spectra (number) of empty PhPCL-PEG nanoparticles

Photothermal Efficiency:

Photothermal properties of Morp-TTDT 2 nanoparticles:
Initially, the photothermal properties of these nanoparticles were determined using high laser power (1.6 W), where we observed instability after the laser exposure (Fig. 33b). Because of this, the photothermal properties were measured at low laser power (0.4 W). The sample did not exhibit a significant change in UV-Vis extinction during the lower power laser irradiation (Fig. S33a). The photothermal conversion efficiency of Morp-TTDT 2 nanoparticles was calculated to be about $47.0 \pm 1.0 \%$ (mean \pm SEM) according to the heating and cooling curves shown in Figure S34.

Figure S33: UV-Vis extinction curves for Morp-TTDT 2 before and after laser irradiation ($0.4 \mathrm{~W} / \mathrm{cm}^{2}$) (a) and UV-Vis extinction curves before and after laser irradiation (1.6 W/cm ${ }^{2}$) (b)

Figure S34: Linearized time data versus $-\ln (\theta)$ for Morp-TTDT ${ }_{2}$ obtained from cooling period, fit to a best fit line (a) and non-linear least squares fitting of a single exponential decay to the time data obtained from the cooling period (b)

Figure S35: Photothermal effect of the irradiation of the Morp-TTDT I $_{2}$ nanoparticles with the NIR laser (808 $\mathrm{nm}, 0.4 \mathrm{~W} / \mathrm{cm}^{2}$), in which the irradiation lasted for 32 minutes, and then the laser was shut off (a) and Photothermal effect of the irradiation of solvent (water) with the NIR laser (808 nm, $0.4 \mathrm{~W} / \mathrm{cm}^{2}$) (b)

Photothermal properties of Pip-TTDT 2 nanoparticles:
First, we used both linearized and non-linearized time data plots to calculate the time constants and selected 560 s as the time constant from the best fit (Fig. S36a). Photothermal conversion efficiency of PIP-TTDT $_{2}$ nanoparticles was calculated to be about $46 \pm 2 \%$ (mean \pm SEM) according to the heating and cooling curves shown in Figures S37.

Figure S36: Linearized time data versus $-\ln (\theta)$ for Pip-TTDT 2 obtained from cooling period, fit to a best fit line (a) and Non-linear least squares fitting of a single exponential decay to the time data obtained from the cooling period (b)

Figure S37: Photothermal effect of the irradiation of the Pip-TTDT $\mathbf{2}_{2}$ nanoparticles with the NIR laser (808 $\mathrm{nm}, 0.4 \mathrm{~W} / \mathrm{cm}^{2}$), in which the irradiation lasted for 53 minutes, and then the laser was shut off.

Figure S38: UV-Vis extinction curves before and after laser irradiation ($0.4 \mathrm{~W} / \mathrm{cm}^{2}$) for Pip-TTDT ${ }_{2}$.

Photothermal properties of DMA-TTDT 2 nanoparticles:
Here, we used both linearized and non-linearized time data plots to calculate the time constants and selected 480 s as the time constant from the best fit (Fig. S39). Photothermal conversion efficiency of DMA-TTDT 2 nanoparticles was calculated to be about $62.0 \pm 3.5 \%$ according to the heating and cooling curves shown in Figures S40.

Figure S39: Linearized time data versus - In (θ) for DMA-TTDT 2 obtained from cooling period, fit to a best fit line (a) and Non-linear least squares fitting of a single exponential decay to the time data obtained from the cooling period (b)

Figure S40: Photothermal effect of the irradiation of the DMA-TTDT 2 nanoparticles with the NIR laser (808 $\mathrm{nm}, 0.4 \mathrm{~W} / \mathrm{cm}^{2}$), in which the irradiation lasted for 27 minutes, and then the laser was shut off

Figure S41: UV-Vis extinction curves before and after laser irradiation ($0.4 \mathrm{~W} / \mathrm{cm}^{2}$) for DMA-TTDT ${ }_{2}$.

Computational Assessment:

Figure S42: Ground (S_{0}) and excited (S_{1}) state natural transition orbitals (NTOs) for Pip-TTDT ${ }_{2}$ (a) and MorpTTDT $_{2}$ (b). The corresponding oscillator strengths for molecules (a) and (b) are 0.62 and 0.61 , respectively. NTOs were computed using CAM-B3LYP with the cc-pVDZ basis set for the hydrogens and carbon atoms and aug-cc-pVDZ for the remaining elements.

Table S3: Ground $\left(\mathrm{S}_{0}\right)$ and excited $\left(\mathrm{S}_{1}\right)$ state dihedral angles (deg.) of the TTDT ${ }_{2}$ derivatives computed using the CAM-B3LYP functional with the cc-pVDZ basis set for the hydrogens and carbon atoms and aug-cc-pVDZ for the remaining elements.

	θ_{1}	θ_{2}	θ_{3}	θ_{4}
	$\mathrm{S}_{0}\left(\mathrm{~S}_{1}\right)$	$\mathrm{S}_{0}\left(\mathrm{~S}_{1}\right)$	$\mathrm{S}_{0}\left(\mathrm{~S}_{1}\right)$	$\mathrm{S}_{0}\left(\mathrm{~S}_{1}\right)$
DMA-TTDT ${ }_{2}$	9.0(3.5)	22.8(1.0)	22.9(1.1)	9.0(3.6)
Pip-TTDT 2_{2}	9.5(8.3)	24.2(9.8)	23.4(9.2)	9.6(8.7)
Morp-TTDT ${ }_{2}$	4.8(3.0)	24.2(11.4)	23.9(11.3)	4.8(3.0)

Figure S43: EPR spectra of the TTDT $_{2}$ derivatives in 1 mM CDCl 3

Table S4: Natural atomic charges of nitrogen atoms computed at the CAM-B3LYP level of theory with the cc-pVDZ basis set for the hydrogens and carbon atoms and aug-cc-pVDZ for the remaining elements. N-1 and $\mathrm{N}-4$ denote the nitrogens on the donor groups, where $\mathrm{N}-2$ and $\mathrm{N}-3$ denote nitrogens on the acceptor group (as read from left to right).

Table S5: Selected ground $\left(S_{0}\right)$ and excited $\left(S_{1}\right)$ state bond lengths (\AA) of the TTDT 2 derivatives computed at the CAM-B3LYP level of theory with the cc-pVDZ basis set for the hydrogens and carbon atoms and aug-cc-pVDZ for the remaining elements.

Å	1	2	3	4	5	6
	$S_{0}\left(S_{1}\right)$	$\mathrm{S}_{0}\left(\mathrm{~S}_{1}\right)$	$\mathrm{S}_{0}\left(\mathrm{~S}_{1}\right)$	$\mathrm{S}_{0}\left(\mathrm{~S}_{1}\right)$	$\mathrm{S}_{0}\left(\mathrm{~S}_{1}\right)$	$\mathrm{S}_{0}\left(\mathrm{~S}_{1}\right)$
DMA-	1.382	1.465	1.429	1.429	1.465	1.382
TTDT 2	(1.375)	(1.454)	(1.418)	(1.418)	(1.454)	(1.375)

	1.405	1.465	1.430	1.430	1.465	1.405
Pip-TTDT 2	(1.398)	(1.455)	(1.142)	(1.418)	(1.455)	(1.399)
Morp-	1.404	1.465	1.430	1.430	1.465	1.404
TTDT $_{2}$	(1.399)	(1.455)	(1.418)	(1.418)	(1.455)	(1.399)

Table S6: Theoretical (CAM-B3LYP) calculations of absorption/emission and the corresponding Stokes shifts along with the oscillator strength indicative of the most probable transition for the TTDT $_{2}$ derivatives.

	Absorbance	Emission	Stokes Shift	Oscillator Strength
	$[\mathrm{nm}(\mathrm{eV})]$	$[\mathrm{nm}(\mathrm{eV})]$	$\left[\mathrm{nm}\left(\mathrm{cm}^{-1} \times 10^{5}\right)\right]$	$\mathbf{S}_{0}\left(\mathrm{~S}_{1}\right)$
	$763(1.62)$	$843(1.47)$	$79.2(1.26)$	$0.620(0.543)$
DMA-TTDT $_{2}$	$740(1.67)$	$816(1.52)$	$72.6(1.38)$	$0.617(0.537)$
Pip-TTDT $_{2}$	744			
Morp-TTDT $_{2}$	$740(1.67)$	$811(1.53)$	$70.5(1.38)$	$0.611(0.527)$

Cartesian coordinates of molecules in S_{0} and S_{1} states:

1) S_{0} geometry of DMA-TTDT 2 :

C	-0.1841283309	3.4254790922	2.6407572170
C	0.1841564465	3.4849392740	-2.5615874377
C	-1.2947559365	-0.1572540651	11.6200211271
C	-0.3369999195	-2.3611092511	10.9860010594
C	1.2787950276	0.1111285897	-11.6231718043
C	0.3347701719	-2.1114772301	-11.0357078239
C	-0.1495708175	-1.0684020127	6.9730457940
C	-1.0891581172	1.0405912472	7.5785743453
C	0.1542399929	-0.9103235529	-6.9940638208
C	1.0811153989	1.2165642420	-7.5550557992
C	-0.2591959450	-1.5038702659	8.2840161730
C	-1.2006625479	0.6229095689	8.8945337107

C	0.2613046049	-1.3155144825	-8.314922124
C	1.1899940311	0.8292690482	-8.8804787408
C	-0.3879775253	1.9709804046	4.7325232403
C	0.3876853634	2.0788269935	-4.6861573175
C	-0.2664642959	2.0945780317	3.3270222639
C	0.2696132657	2.1701584944	-3.2778962132
C	-0.5602072551	0.2119244726	6.5795835477
C	0.5600121516	0.3628255526	-6.5731956580
C	-0.7984733327	-0.6712921895	9.2855000902
C	0.7929692263	-0.4578382431	-9.2991503227
C	-0.4383568076	0.6780868228	5.1965100092
C	0.4411112257	0.7969741258	-5.1794863623
C	-0.0504514748	-0.7524980850	0.7131494263
C	0.0703187548	-0.7360720065	-0.7285423420
C	-0.2222215067	0.8542101608	2.6925714915
C	0.2312211826	0.9155899355	-2.6715936705
C	-0.1021733038	0.5320973186	1.3056952095
C	0.1141481290	0.5617370774	-1.2922244670
N	-0.9324548049	-1.1049160060	10.5910090521
N	0.9247558943	-0.8612293234	-10.6145417542
S	-0.3453140251	-0.4439995894	3.8694668033
S	0.3579096868	-0.3551504423	-3.8777546068
S	0.0021619738	1.7142320191	0.0197409477
H	-0.2242808573	4.2392829518	3.3771572379
H	-1.0140698527	3.5748440387	1.9319471628
H	0.7509397932	3.5370212119	2.0694024646
H	0.2219584010	4.3153107680	-3.2793843494
H	1.0139831633	3.6203121380	-1.8498555776
H	-0.7509819769	3.5811496334	-1.9875485489
H	-1.3617215990	-0.6796841220	12.5817881148
H	-2.2798646618	0.2941112131	11.4209762585
H	-0.5624421653	0.6661543271	11.7250331726
H	-0.5624346158	-2.5490538674	12.0425712110
H	0.7626101880	-2.3757602874	10.8596647169
H	-0.7519049568	-3.2005859891	10.4058207331
H	1.3462060943	-0.3894438178	-12.5964601020
H	2.2618148258	0.5637092317	-11.4166740937
H	0.5414863036	0.9324029475	-11.7081166422
H	0.5587938255	-2.2751489964	-12.0966167921
H	-0.7644702831	-2.1345567458	-10.9073443195
H	0.7552541064	-2.9612704101	-10.4749032013
H	0.2888276674	-1.7439924965	6.2358173631
H	-1.4401636806	2.0403835438	7.3182724325
H	-0.2781548219	-1.6045569524	-6.2707435232
H	1.4280439594	2.2120041911	-7.2735019576
H	0.0879838170	-2.5057834404	8.5274739081
H	-1.6198142933	1.3133637814	9.6235919054
H	-0.0819555469	-2.3133216921	-8.5798239815
H	1.6030559936	1.5380519899	-9.5952603884

H	-0.4094759982	2.8380356491	5.3922282640
H	0.4039191523	2.9607205323	-5.3260263969
N	-0.0925441407	-1.9746487928	1.2394982501
N	0.1197699739	-1.9459192933	-1.2819832323
S	0.0172626169	-3.0181579100	-0.0329774191

2) S_{1} geometry of DMA-TTDT ${ }_{2}$:

C	-0.2322176449	3.5050862007	2.6528217790
C	0.1915205559	3.5642938007	-2.5755454064
C	-0.8745472205	-0.1804703696	11.6211474581
C	-0.8427301168	-2.5459826624	10.8165892096
C	0.9153729097	0.0865156327	-11.6191798292
C	0.8311832587	-2.2969888436	-10.8736165688
C	-0.5791179216	-1.1341655055	6.8494850447
C	-0.6085857903	1.1289466304	7.6201395730
C	0.5546204865	-0.9782109167	-6.8755178736
C	0.6377140596	1.3021451430	-7.5894608615
C	-0.6850449364	-1.5888245520	8.1508531995
C	-0.7148497093	0.6916034710	8.9267962632
C	0.6642814602	-1.4027022737	-8.1867438923
C	0.7477536800	0.8951136977	-8.9055487373
C	-0.3951183932	2.0198875371	4.7137280014
C	0.3741954329	2.1262223428	-4.6679544681
C	-0.2804087287	2.1643104054	3.3221271567
C	0.2584698339	2.2390444742	-3.2735278262
C	-0.5381741692	0.2356898795	6.5361165307
C	0.5381362183	0.3840707306	-6.5287033069
C	-0.7616253474	-0.6867788136	9.2343694972
C	0.7695913706	-0.4759564268	-9.2467725690
C	-0.4264221154	0.7118704181	5.1671727996
C	0.4219491350	0.8288228094	-5.1495881833
C	-0.0503297797	-0.6755487468	0.7100841263
C	0.0665130875	-0.6593360700	-0.7234592552
C	-0.2199334651	0.9232346288	2.6651996583
C	0.2146445462	0.9833917492	-2.6435465477
C	-0.1048400034	0.6146360930	1.2858551170
C	0.1038827945	0.6435826326	-1.2712159061
N	-0.8766594610	-1.1294232183	10.5314585476
N	0.8886072210	-0.8887258517	-10.5533115201
S	-0.3085120134	-0.3909760219	3.8256356625
S	0.3213832214	-0.3041879500	-3.8319838416
S	-0.0086407683	1.8234704806	0.0201710131
H	-0.2977390892	4.3068899611	3.4005114300
H	-1.0627040181	3.6397784163	1.9423478097
H	0.7018242450	3.6487535616	2.0875177715
H	0.2452452638	4.3828339660	-3.3058424453
	-0.3		

H	1.0204144917	3.6954952676	-1.8625589234
H	-0.7441460930	3.6824800836	-2.0070500533
H	-0.9852359171	-0.7198412500	12.5688701647
H	-1.7116862899	0.5336073536	11.5422856934
H	0.0620815469	0.4044200740	11.6683297605
H	-0.9573201824	-2.6989591999	11.8958753226
H	0.1075637707	-3.0153014204	10.5035940942
H	-1.6636977760	-3.0833197951	10.3126103891
H	1.0236262705	-0.4315544112	-12.5789803494
H	1.7659358412	0.7813733498	-11.5157449302
H	-0.0088685678	0.6912415178	-11.6597815943
H	0.9530618729	-2.4255742976	-11.9552751012
H	-0.1305156729	-2.7559969502	-10.5808343968
H	1.6372914208	-2.8617218599	-10.3756455075
H	-0.5256108755	-1.8737689658	6.0484150839
H	-0.5757813749	2.2036900839	7.4391314642
H	0.4761934536	-1.7360431590	-6.0937715187
H	0.6283519680	2.3725110639	-7.3817708711
H	-0.7091288487	-2.6624839201	8.3248607414
H	-0.7614950287	1.4341846994	9.7206981044
H	0.6677449070	-2.4720163086	-8.3871589448
H	0.8187022189	1.6559469797	-9.6801291241
H	-0.4565224754	2.8809774555	5.3778800604
H	0.4203309861	3.0021822823	-5.3136448586
N	-0.0878731512	-1.8870703099	1.2587082507
N	0.1204225910	-1.8581592442	-1.2980089770
S	0.0228198387	-2.9510864982	-0.0312986767

3) So geometry of Pip-TTDT2:

C	0.5084049222	1.2891207009	4.2812560932
C	1.0466558304	2.2180424159	3.2342912573
C	1.7122195457	3.4254083520	3.5591939636
C	2.1517778100	4.1505204660	2.4778986176
C	2.8751314797	5.4248254956	2.4722707711
C	2.7982593451	6.3026346200	3.5664209293
C	3.4840040973	7.5032314960	3.5787667969
C	4.2905297680	7.8983596411	2.4949022127
N	4.9493063731	9.1386707936	2.5257797614
C	5.5594166992	9.6143586278	1.2939401999
C	5.8319002168	11.1142470698	1.3663563638
C	6.6822158086	11.4696280198	2.5818913892
C	6.0359270045	10.9147680576	3.8476902297
C	5.7675089429	9.4220852525	3.7049089650
C	4.3653981970	7.0252762164	1.4002335440
C	3.6693526606	5.8217692956	1.3925783851
S	1.7306607235	3.3433387223	0.9956039541

C	0.9744027319	2.0132854711	1.8574354469
C	0.4011970830	0.9349353854	1.1143183250
C	0.3614837367	0.7735914007	-0.2913121843
C	-0.2935365977	-0.4389272943	-0.7304511441
N	-0.3269925376	-0.5877402526	-2.0533621020
S	0.4289469725	0.7382803339	-2.6763338550
N	0.8175911980	1.5332283223	-1.2853476420
C	-0.7800771611	-1.2493854187	0.3229950012
C	-1.4615964576	-2.5021171638	0.2230047184
C	-1.9667407045	-3.3330308545	1.2216303398
C	-1.9036969447	-3.0599755444	2.6948024650
C	-2.5768218834	-4.4953736341	0.6895771017
C	-2.5563254200	-4.5809399506	-0.6816805577
C	-3.0966849328	-5.6437511574	-1.5335435755
C	-3.2763805900	-6.9447507365	-1.0349231640
C	-3.7878088530	-7.9571796812	-1.8256976763
C	-4.1519616039	-7.7276175039	-3.1658710737
N	-4.6343058464	-8.7859010515	-3.9534263662
C	-4.7567549632	-8.5665539073	-5.3861289657
C	-4.8517771921	-9.8944763215	-6.1327725674
C	-5.9943137606	-10.7540340389	-5.6011962017
C	-5.8574976988	-10.9225735216	-4.0909750623
C	-5.7443779807	-9.5661511339	-3.4068843460
C	-3.9734126873	-6.4294881819	-3.6653000226
C	-3.4534563947	-5.4175976472	-2.8660481975
S	-1.7526540917	-3.1969561324	-1.3632636480
S	-0.3927195912	-0.4496824605	1.8293038063
H	0.7075382195	1.6870972834	5.2852615206
H	0.9675620191	0.2897413172	4.2205128056
H	-0.5802256463	1.1498000505	4.1868078516
H	1.8867869075	3.7343869424	4.5895012469
H	2.1576751658	6.0524516680	4.4134109565
H	3.3623834181	8.1739587394	4.4295872627
H	4.8726954580	9.4086437016	0.4622108382
H	6.5081738408	9.0746747199	1.0780236590
H	4.8658319239	11.6427610482	1.4252860227
H	6.3238862710	11.4359586638	0.4352260701
H	6.8176974598	12.5596592772	2.6566676714
H	7.6897880789	11.0317478075	2.4653374329
H	5.0798881277	11.4320116277	4.0344208696
H	6.6795502426	11.0855905140	4.7248713155
H	5.2585302445	9.0423573781	4.5978275461
H	6.7356972452	8.8793544978	3.6326363231
H	4.9905311532	7.2676295049	0.5427413856
H	3.7744693282	5.1624744827	0.5287137766
H	-2.4041175805	-2.1153644913	2.9602570158
H	-0.8653847379	-2.9868962736	3.0555194031
H	-2.3948951185	-3.8666896140	3.2551448107
H	-3.0508042366	-5.2455384003	1.3221435891

H $\quad-2.9737014285$-7.1756029113 -0.0124616048
H $\quad-3.8693755979-8.9625167654-1.4119608505$
H $\quad-3.8716372820$-8.0167764234 -5.7323310931
H $\quad-5.6461033869-7.9419925545-5.6246214834$
H $\quad-3.8976798345-10.4335088152$-6.0096510747
H $\quad-4.9778220038$-9.6946085137 -7.2082756322
H $\quad-6.0111794661$-11.7330027094 -6.1046456234
H $\quad-6.9582861531$-10.2640113087 -5.8273986046
H $\quad-4.9536605894-11.5121461852-3.8633442360$
H $\quad-6.7198793820-11.4677813300$-3.6763807263
H $\quad-5.5982633949$-9.6968292005 -2.3288806443
H $\quad-6.6980591598$-9.0086165961 -3.5362472572
H $\quad-4.2600745612$-6.1876292231 -4.6871021512
H $\quad-3.3502349715$-4.4167385873 -3.2898574356

4) S_{1} geometry of Pip-TTDT $\mathbf{T}_{\mathbf{2}}$

C	0.5178676810	1.2673601272	4.3649525765
C	1.0567658566	2.1791161879	3.3038729908
C	1.7209107873	3.3787223807	3.6055711725
C	2.1600251849	4.0968254318	2.5066655320
C	2.8781600903	5.3620598215	2.4884768487
C	3.0490311633	6.1214631970	3.6625638057
C	3.7301324872	7.3217537433	3.6570339077
C	4.2901793730	7.8454409130	2.4733630766
N	4.9462395400	9.0804556096	2.4903084653
C	5.3048303277	9.6927899809	1.2199390076
C	5.5415857718	11.1916256965	1.3857426970
C	6.5841142823	11.4797573122	2.4611443011
C	6.1898120962	10.7898373444	3.7633953684
C	5.9481495931	9.3037434826	3.5323762649
C	4.1219477315	7.0911265989	1.2999443913
C	3.4315299590	5.8880139594	1.3119431942
S	1.7358674679	3.2688472091	1.0366379530
C	0.9757065054	1.9553050047	1.9183735357
C	0.3995695454	0.8831097717	1.1905269839
C	0.3730254489	0.7344719844	-0.2155057910
C	-0.2817357614	-0.4691353335	-0.6521714956
N	-0.3212602544	-0.6423251208	-1.9704213579
S	0.4551144273	0.6987585036	-2.6078935712
N	0.8445285294	1.5051749141	-1.1916942123
C	-0.7713597313	-1.2618605088	0.4115582736
C	-1.4570257161	-2.4983306993	0.3007687219
C	-1.9849025990	-3.3421963572	1.2935825538
C	-1.9342999786	-3.0854688068	2.7697721623
C	-2.5911106901	-4.4841874191	0.7463396539
C	-2.5559806119	-4.5600589321	-0.6353967823

C	-3.0935302159	-5	
C	-3.5662464307	-6.8190278532	-0.9
C	-4.0761848316	-7.8186792661	-1.
C	-4.1501678534	-7.6722635429	-3.1585014538
N	-4.6372824280	-8.7152542481	-3.9525368724
C	-4.4873688422	-8.6150680299	0
C	-4.6023911211	-9.9880961485	-6.0535
C	-5.90	-10.6874406941	-5
C	-6.0340826568	400029	-4.
C	-5.8948132294	-9.3463945482	-3.5526021630
C	-3.6814783906	-6.4626518005	-3.6986521661
C	-3.1649369254	-5.4645553682	-2.8855715115
S	-1.7390405091	-3.1729188502	-1.2948760579
S	-0.4000067847	-0.4853871938	1.9380427024
H	0.7207094819	1.6811126688	5.3618281756
H	0.9743382373	0.2663861163	2
H	-0.5709711147	1.1301705122	4.2740679982
H	1.8884269049	3.7028429335	4.
H	2.6135146919	5.7749102337	4.6001976487
H	3.7996199539	7.8913460597	4.5835809887
H	4.4834565927	9.5325430168	0.5098643488
H	6.2121969274	9.2171416262	0.7873409787
H	4.5862838820	11.6679337108	6
H	5.8485921954	11.6153471762	0.416948
H	6.6974941312	12.5643941588	2.6
H	7.5677418555	11.1006671801	2.
H	5.2662080536	11.2437103143	4.160070
H	6.9	10.9149419906	2
H	5.6197178124	8.8247181710	4.4609039281
H	6.9043165246	8.8166655146	3.2416012242
H	4.5526278893	7.4305327636	0.3598663756
H	3.3430614761	5.3321739101	0.3766240412
H	-2.4343684157	-2.1424553727	3.0401925266
H	-0.8992494583	-3.0195352058	3.1399923855
H	-2.4332853679	-3.8976979733	3.3150883646
H	-3.0667170885	-5.2398917493	1.3702427090
H	-3.5069300119	-6.9947778513	0.120161776
H	-4.3897581681	-8.7547716604	-1.2961971893
H	-3.4994395339	-8.1911388903	-5.617283915
H	-5.2457150074	-7.9279056753	-5.8315777906
H	-3.7456382748	-10.6029988705	-5.7309903
H	-4.5259727647	-9.8699051533	-7.14555504
H	-5.9411264628	-11.6992964534	-6.102636883
H	-6.7582091789	-10.1295599620	-6.091
H	-5.2471925242	-11.3888430395	-3.73231
H	-7.0052453636	-11.1658617232	-3.8551261
H	-5.9441569831	-9.3978038161	-2.4597438033
H	-6.7500518264	-8.7174747764	-3.8

```
H -3.7359402129 -6.2794441006 -4.7699992178
H -2.8286779048 -4.5374246828 -3.3535372988
```


5) So geometry of Morp-TTDT ${ }_{2}$:

C	0.1946318026	1.4030429529	4.2724860105
C	0.7662015645	2.3259456159	3.2379156957
C	1.3521895734	3.5718130816	3.5706417957
C	1.8367551947	4.2847010955	2.5006511365
C	2.4970906814	5.5928604910	2.5055155918
C	2.2896584066	6.5007515627	3.5566270390
C	2.9111243812	7.7360106992	3.5791542635
C	3.7785203465	8.1375965319	2.5465438571
N	4.3658015440	9.4128541486	2.5731755422
C	5.1326198447	9.8372808895	1.4134331945
C	5.3830546102	11.3361251872	1.4816317154
O	6.0336551707	11.7039787505	2.6783022881
C	5.2527620228	11.3335011362	3.7939325852
C	5.0021026942	9.8359096706	3.8186874627
C	3.9871658538	7.2331050102	1.4955625979
C	3.3558175498	5.9948200732	1.4782591519
S	1.5627365504	3.4159487161	1.0188978574
C	0.8038183099	2.0788317373	1.8669420383
C	0.3316056477	0.9552940300	1.1194242277
C	0.4090002418	0.7477089636	-0.2783391894
C	-0.1695649778	-0.5004381416	-0.7245316711
N	-0.0938356909	-0.6931423386	-2.0400988301
S	0.6667059849	0.6370799811	-2.6470292784
N	0.9169426065	1.4909672957	-1.2597244204
C	-0.7121957532	-1.2921023187	0.3154799843
C	-1.3455656625	-2.5692470616	0.2065046266
C	-1.9045672800	-3.3819086317	1.1909510956
C	-1.9678163901	-3.0574660818	2.6536689823
C	-2.4354998182	-4.5802621120	0.6539191362
C	-2.3020681073	-4.7102926286	-0.7073979025
C	-2.7423624772	-5.8168095806	-1.5613203543
C	-2.9255410638	-7.1052022980	-1.0334377223
C	-3.3464329717	-8.1583707876	-1.8248980288
C	-3.6082576487	-7.9838704775	-3.1963197563
N	-3.9961729977	-9.0780984408	-3.9865365652
C	-4.1101422269	-8.8782214061	-5.4218491108
C	-4.1953832562	-10.2243709981	-6.1250012265
O	-5.2667743360	-11.0023794478	-5.6377166831
C	-5.1142974616	-11.2331536588	-4.2538315967
C	-5.0707722538	-9.9280477404	-3.4784931533
C	-3.4264152481	-6.6982457541	-3.7259180420
C	-2.9991732191	-5.6457217784	-2.9247193807
		0.0	

S	-1.4877409536	-3.3245761832	-1.3721752929
S	-0.4696293637	-0.4324690941	1.8183319598
H	0.3140768058	1.8318296674	5.2764300553
H	0.6917557008	0.4201724550	4.2670969907
H	-0.8800739690	1.2213493168	4.1125895133
H	1.4369577955	3.9185712623	4.6002694572
H	1.5982128317	6.2443463486	4.3606019716
H	2.6885160897	8.4222698833	4.3960220174
H	4.5631109618	9.6162403847	0.5000004124
H	6.1054590123	9.3061335144	1.3481790571
H	4.4166807609	11.8709090799	1.3946699598
H	6.0349183638	11.6506375664	0.6551374033
H	4.2828236741	11.8689901870	3.7747697131
H	5.8096138913	11.6428400060	4.6892079173
H	4.3603170682	9.5922390498	4.6735987716
H	5.9681842580	9.3083049956	3.9598440591
H	4.6658316189	7.4792757975	0.6811268093
H	3.5631611238	5.3139114971	0.6504715483
H	-2.5154443898	-2.1210002985	2.8442550979
H	-0.9642659306	-2.9387242967	3.0922416992
H	-2.4783005045	-3.8600894335	3.2025001713
H	-2.9368420861	-5.3236673041	1.2732572555
H	-2.7007724884	-7.2931523608	0.0174517215
H	-3.4361584067	-9.1486971899	-1.3788196981
H	-3.2207187813	-8.3459766379	-5.7867819079
H	-5.0033789939	-8.2721008654	-5.6817560164
H	-3.2391457110	-10.7671926120	-5.9892648877
H	-4.3690823586	-10.0811998479	-7.2003024630
H	-4.1850083128	-11.8058394150	-4.0632090151
H	-5.9741430375	-11.8386268657	-3.9354448011
H	-4.9111346471	-10.1457559034	-2.4158009887
H	-6.0501005414	-9.4151647821	-3.5753990962
H	-3.6365753932	-6.4976184885	-4.7747204545
H	-2.8902150528	-4.6569797405	-3.3745702337

6) S_{1} geometry of Morp-TTDT 2 :

$\begin{array}{llll}C & 0.1581262629 & 1.4101641066 & 4.3614757249\end{array}$
$\begin{array}{lllll}\text { C } & 0.7298020255 & 2.3136705095 & 3.3105694685\end{array}$
$\begin{array}{lllll}\text { C } & 1.3144258844 & 3.5529878480 & 3.6169577814\end{array}$
$\begin{array}{lllll}\text { C } & 1.8009487341 & 4.2549029586 & 2.5278451424\end{array}$
$\begin{array}{lllll}\text { C } & 2.4626374163 & 5.5510045976 & 2.5164254516\end{array}$
C $\quad 2.4775396021 \quad 6.3736256633 \quad 3.6588825890$
$\begin{array}{lllll}\text { C } & 3.1065303372 & 7.6026984211 & 3.6609245124\end{array}$
C $\quad 3.7646518091 \quad 8.0936272732 \quad 2.5150241348$
$\begin{array}{lllll}\mathrm{N} & 4.3636571473 & 9.3574486264 & 2.5253355265\end{array}$
C $\quad 4.9370417481 \quad 9.8625244431 \quad 1.2877894623$
C $\quad 5.1915140121 \quad 11.3578071012 \quad 1.4044067101$
$\begin{array}{lllll}0 & 6.0122676221 & 11.6657823940 & 2.5092647502\end{array}$

C	5.4034215264	11.2297479019	3.7047676663
C	5.1669585686	9.7297731139	3.6878005224
C	3.7534699584	7.2752713925	1.3727549190
C	3.1155140923	6.0438774534	1.3773575334
S	1.5238544422	3.3622565456	1.0611407633
C	0.7612057247	2.0424248089	1.9314530189
C	0.2886011609	0.9222489760	1.2014980529
C	0.3718640296	0.7304267493	-0.1969549895
C	-0.1973602589	-0.5136679725	-0.6394283387
N	-0.1335315960	-0.7275144144	-1.9506699009
S	0.6295473230	0.6272214845	-2.5746606492
N	0.8798876691	1.4921406479	-1.1617511076
C	-0.7288867494	-1.2955804631	0.4120055418
C	-1.3512330043	-2.5641156512	0.2916693420
C	-1.9095207688	-3.4045673235	1.2707050003
C	-1.9722015798	-3.1068427920	2.7386902564
C	-2.4267780493	-4.5867435173	0.7170851793
C	-2.2935246100	-4.6961235265	-0.6562171313
C	-2.7281912796	-5.7851799190	-1.5180803171
C	-3.1573164207	-7.0143653695	-0.9823239246
C	-3.5735426212	-8.0535648194	-1.7905374141
C	-3.5875224897	-7.9323740767	-3.1949339245
N	-3.9750577937	-9.0095213047	-3.9984843162
C	-3.8715492759	-8.8688813602	-5.4423414664
C	-3.9736831756	-10.2333737679	-6.1068088987
O	-5.1595575144	-10.9055382807	-5.7445364002
C	-5.2048065032	-11.0939904535	-4.3472157348
C	-5.1627637551	-9.7669147499	-3.6099149484
C	-3.1626547220	-6.7062104683	-3.7339600106
C	-2.7417337496	-5.6687575958	-2.9155757958
S	-1.4924962817	-3.2925282268	-1.2990111579
S	-0.5039619876	-0.4580883400	1.9350310516
H	0.2769335769	1.8598834526	5.3562928720
H	0.6566170978	0.4284410124	4.3750140311
H	-0.9158413006	1.2247002941	4.2034317664
H	1.3935251080	3.9167456526	4.6407282516
H	1.9607982570	6.0525109747	4.5637755676
H	3.0562665295	8.2128398596	4.5619692584
H	4.2311225171	9.6925475123	0.4635078168
H	5.8866146729	9.3449194019	1.0387156897
H	4.2221130501	11.8870330206	1.4923743172
H	5.7112777031	11.7237452143	0.5084992062
H	4.4387129720	11.7540202521	3.8544703966
H	6.0824248753	11.4987630015	4.5255558982
H	4.6561597481	9.4376783866	4.6124095984
H	6.1454845766	9.2078281159	3.6627757360
H	4.2655424694	7.5863486267	0.4645306654
H	3.1503381591	5.4392274029	0.4692561804
H	-2.5332103244	-2.1824828337	2.9468941258

H	-0.9690956868	-2.9808780776	3.1752958847
H	-2.4688482649	-3.9276782792	3.2730861033
H	-2.9130428484	-5.3460436402	1.3283857458
H	-3.1409269725	-7.1696833413	0.0968471189
H	-3.8613604742	-8.9946161887	-1.3233357851
H	-2.8972922303	-8.4297562815	-5.6964644671
H	-4.6634805923	-8.2031254961	-5.8439684811
H	-3.0914499119	-10.8424404868	-5.8270623569
H	-3.9909261042	-10.1214097884	-7.1994575428
H	-4.3547998897	-11.7252524424	-4.0202288352
H	-6.1423704411	-11.6225281631	-4.1264186668
H	-5.1560105536	-9.9577469640	-2.5306878731
H	-6.0809393207	-9.1908183487	-3.8457258991
H	-3.1750294540	-6.5410324183	-4.8093093843
H	-2.4368889472	-4.7309624312	-3.3836502432

References:

(1) Yanai, T.; Tew, D. P.; Handy, N. C. A New Hybrid Exchange-Correlation Functional Using the Coulomb-Attenuating Method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393 (1), 51-57. https://doi.org/10.1016/j.cplett.2004.06.011.
(2) Dunning, T. H. Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen. J. Chem. Phys. 1989, 90 (2), 1007-1023. https://doi.org/10.1063/1.456153.
(3) Woon, D. E.; Dunning, T. H., Jr. Gaussian Basis Sets for Use in Correlated Molecular Calculations. III. The Atoms Aluminum through Argon. J. Chem. Phys. 1993, 98 (2), 1358-1371. https://doi.org/10.1063/1.464303.
(4) Marques, M. A. L.; Gross, E. K. U. Time-Dependent Density Functional Theory. Annu. Rev. Phys. Chem. 2004, 55 (1), 427-455. https://doi.org/10.1146/annurev.physchem.55.091602.094449.
(5) Kendall, R. A.; Dunning, T. H., Jr.; Harrison, R. J. Electron Affinities of the First-row Atoms Revisited. Systematic Basis Sets and Wave Functions. J. Chem. Phys. 1992, 96 (9), 6796-6806. https://doi.org/10.1063/1.462569.
(6) Mennucci, B. Polarizable Continuum Model. WIREs Comput. Mol. Sci. 2012, 2 (3), 386-404. https://doi.org/10.1002/wcms. 1086.
(7) Martin, R. L. Natural Transition Orbitals. J. Chem. Phys. 2003, 118 (11), 4775-4777. https://doi.org/10.1063/1.1558471.
(8) Glendening, E. D.; Landis, C. R.; Weinhold, F. Natural Bond Orbital Methods. WIREs Comput. Mol. Sci. 2012, 2 (1), 1-42. https://doi.org/10.1002/wcms.51.
(9) Ohio Supercomputer Center. Ohio Supercomputer Center. https://www.osc.edu/ (accessed 2023-03-09).
(10) Epifanovsky, E.; Gilbert, A. T. B.; Feng, X.; Lee, J.; Mao, Y.; Mardirossian, N.; Pokhilko, P.; White, A. F.; Coons, M. P.; Dempwolff, A. L.; Gan, Z.; Hait, D.; Horn, P. R.; Jacobson, L. D.; Kaliman, I.; Kussmann, J.; Lange, A. W.; Lao, K. U.; Levine, D. S.; Liu, J.; McKenzie, S. C.; Morrison, A. F.; Nanda, K. D.; Plasser, F.; Rehn, D. R.; Vidal, M. L.; You, Z.-Q.; Zhu, Y.; Alam, B.; Albrecht, B. J.; Aldossary, A.; Alguire, E.; Andersen, J. H.; Athavale, V.; Barton, D.; Begam, K.; Behn, A.; Bellonzi, N.; Bernard, Y. A.; Berquist, E. J.; Burton, H. G. A.; Carreras, A.; Carter-Fenk, K.; Chakraborty, R.; Chien, A. D.; Closser, K. D.; Cofer-Shabica, V.; Dasgupta, S.; de Wergifosse, M.; Deng, J.; Diedenhofen, M.; Do, H.; Ehlert, S.; Fang, P.-T.; Fatehi, S.; Feng, Q.; Friedhoff, T.; Gayvert, J.; Ge, Q.; Gidofalvi, G.; Goldey, M.; Gomes, J.; González-Espinoza, C. E.; Gulania, S.; Gunina, A. O.; Hanson-Heine, M. W. D.;

Harbach, P. H. P.; Hauser, A.; Herbst, M. F.; Hernández Vera, M.; Hodecker, M.; Holden, Z. C.; Houck, S.; Huang, X.; Hui, K.; Huynh, B. C.; Ivanov, M.; Jász, Á.; Ji, H.; Jiang, H.; Kaduk, B.; Kähler, S.; Khistyaev, K.; Kim, J.; Kis, G.; Klunzinger, P.; Koczor-Benda, Z.; Koh, J. H.; Kosenkov, D.; Koulias, L.; Kowalczyk, T.; Krauter, C. M.; Kue, K.; Kunitsa, A.; Kus, T.; Ladjánszki, I.; Landau, A.; Lawler, K. V.; Lefrancois, D.; Lehtola, S.; Li, R. R.; Li, Y.-P.; Liang, J.; Liebenthal, M.; Lin, H.-H.; Lin, Y.-S.; Liu, F.; Liu, K.-Y.; Loipersberger, M.; Luenser, A.; Manjanath, A.; Manohar, P.; Mansoor, E.; Manzer, S. F.; Mao, S.-P.; Marenich, A. V.; Markovich, T.; Mason, S.; Maurer, S. A.; McLaughlin, P. F.; Menger, M. F. S. J.; Mewes, J.-M.; Mewes, S. A.; Morgante, P.; Mullinax, J. W.; Oosterbaan, K. J.; Paran, G.; Paul, A. C.; Paul, S. K.; Pavošević, F.; Pei, Z.; Prager, S.; Proynov, E. I.; Rák, Á.; Ramos-Cordoba, E.; Rana, B.; Rask, A. E.; Rettig, A.; Richard, R. M.; Rob, F.; Rossomme, E.; Scheele, T.; Scheurer, M.; Schneider, M.; Sergueev, N.; Sharada, S. M.; Skomorowski, W.; Small, D. W.; Stein, C. J.; Su, Y.-C.; Sundstrom, E. J.; Tao, Z.; Thirman, J.; Tornai, G. J.; Tsuchimochi, T.; Tubman, N. M.; Veccham, S. P.; Vydrov, O.; Wenzel, J.; Witte, J.; Yamada, A.; Yao, K.; Yeganeh, S.; Yost, S. R.; Zech, A.; Zhang, I. Y.; Zhang, X.; Zhang, Y.; Zuev, D.; Aspuru-Guzik, A.; Bell, A. T.; Besley, N. A.; Bravaya, K. B.; Brooks, B. R.;
Casanova, D.; Chai, J.-D.; Coriani, S.; Cramer, C. J.; Cserey, G.; DePrince, A. E., III; DiStasio, R. A., Jr.; Dreuw, A.; Dunietz, B. D.; Furlani, T. R.; Goddard, W. A., III; Hammes-Schiffer, S.; Head-Gordon, T.; Hehre, W. J.; Hsu, C.-P.; Jagau, T.-C.; Jung, Y.; Klamt, A.; Kong, J.; Lambrecht, D. S.; Liang, W.; Mayhall, N. J.; McCurdy, C. W.; Neaton, J. B.; Ochsenfeld, C.; Parkhill, J. A.; Peverati, R.; Rassolov, V. A.; Shao, Y.; Slipchenko, L. V.; Stauch, T.; Steele, R. P.; Subotnik, J. E.; Thom, A. J. W.; Tkatchenko, A.; Truhlar, D. G.; Van Voorhis, T.; Wesolowski, T. A.; Whaley, K. B.; Woodcock, H. L., III;

Zimmerman, P. M.; Faraji, S.; Gill, P. M. W.; Head-Gordon, M.; Herbert, J. M.; Krylov, A. I. Software for the Frontiers of Quantum Chemistry: An Overview of Developments in the Q-Chem 5 Package. J. Chem. Phys. 2021, 155 (8), 084801. https://doi.org/10.1063/5.0055522.
(11) Zhang, Y.; Autry, S. A.; McNamara, L. E.; Nguyen, S. T.; Le, N.; Brogdon, P.; Watkins, D. L.; Hammer, N. I.; Delcamp, J. H. Near-Infrared Fluorescent Thienothiadiazole Dyes with Large Stokes Shifts and High Photostability. J. Org. Chem. 2017, 82 (11), 5597-5606. https://doi.org/10.1021/acs.joc.7b00422.

